International Journal of Orthopaedics, Volume. 46, Issue 4, 248(2025)

The RANKL/RANK/OPG path crosstalk with other paths role in osteoporosis

SHI Min1, HUANG Yongyin1, LI Hongyu2, and TANG Qiang2,3、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(40)

    [1] [1] Wu J, Niu L, Yang K, et al. The role and mechanism of RNA-binding proteins in bone metabolism and osteoporosis[J]. Ageing Res Rev, 2024, 96: 102234.

    [2] [2] Loukas AT, Papadourakis M, Panagiotopoulos V, et al. Natural compounds for bone remodeling: a computational and experimental approach targeting bone metabolism-related proteins[J]. Int J Mol Sci, 2024, 25(9): 5047.

    [3] [3] Aibar-Almazn A, Voltes-Martnez A, Castellote-Caballero Y, et al. Current status of the diagnosis and management of osteoporosis[J]. Int J Mol Sci, 2022, 23(16): 9465.

    [4] [4] Huang F, Gao J, Li A, et al. Activation of NF-B signaling regulates ovariectomy-induced bone loss and weight gain[J]. Biochim Biophys Acta Mol Basis Dis, 2024, 1870(7): 167320.

    [5] [5] Song S, Guo Y, Yang Y, et al. Advances in pathogenesis and therapeutic strategies for osteoporosis[J]. Pharmacol Ther, 2022, 237: 108168.

    [6] [6] Ma C, Yu R, Li J, et al. Targeting proteostasis network in osteoporosis: Pathological mechanisms and therapeutic implications[J]. Ageing Res Rev, 2023, 90: 102024.

    [7] [7] Reid IR, Billington EO. Drug therapy for osteoporosis in older adults[J]. Lancet, 2022, 399(10329): 1080-1092.

    [8] [8] Zhang YW, Song PR, Wang SC, et al. Diets intervene osteoporosis via gut-bone axis[J]. Gut Microbes, 2024, 16(1): 2295432.

    [9] [9] Usategui-Martn R, Prez-Castrilln JL. Animal experimental models in bone metabolic disease[J]. Int J Mol Sci, 2023, 24(11): 9534.

    [10] [10] Karsenty G, Khosla S. The crosstalk between bone remodeling and energy metabolism: a translational perspective[J]. Cell Metab, 2022, 34(6): 805-817.

    [11] [11] Veis DJ, O'Brien CA. Osteoclasts, master sculptors of bone[J]. Annu Rev Pathol, 2023, 18: 257-281.

    [12] [12] Li S, Liu G, Hu S. Osteoporosis: interferon-gamma-mediated bone remodeling in osteoimmunology[J]. Front Immunol, 2024, 15: 1396122.

    [13] [13] Jiang Z, Qi G, He X, et al. Ferroptosis in osteocytes as a target for protection against postmenopausal osteoporosis[J]. Adv Sci (Weinh), 2024, 11(12): e2307388.

    [14] [14] Delgado-Calle J, Bellido T. The osteocyte as a signaling cell[J]. Physiol Rev, 2022, 102(1): 379-410.

    [15] [15] Behrens A, Wurmthaler L, Heindl F, et al. RANK and RANKL expression in tumors of patients with early breast cancer[J]. Geburtshilfe Frauenheilkd, 2023, 84(1): 77-85.

    [16] [16] Nirala BK, Yamamichi T, Yustein JT. Deciphering the signaling mechanisms of osteosarcoma tumorigenesis[J]. Int J Mol Sci, 2023, 24(14): 11367.

    [17] [17] Dutka M, Bobiski R, Wojakowski W, et al. Osteoprotegerin and RANKL-RANK-OPG-TRAIL signalling axis in heart failure and other cardiovascular diseases[J]. Heart Fail Rev, 2022, 27(4): 1395-1411.

    [18] [18] Hooshiar SH, Tobeiha M, Jafarnejad S. Soy isoflavones and bone health: focus on the RANKL/RANK/OPG Pathway[J]. Biomed Res Int, 2022, 2022: 8862278.

    [19] [19] Marcadet L, Bouredji Z, Argaw A, et al. The roles of RANK/RANKL/OPG in cardiac, skeletal, and smooth muscles in health and disease[J]. Front Cell Dev Biol, 2022, 10: 903657.

    [20] [20] Gostage J, Kostenuik P, Goljanek-Whysall K, et al. Extra-osseous roles of the RANK-RANKL-OPG axis with a focus on skeletal muscle[J]. Curr Osteoporos Rep, 2024, 22(6): 632-650.

    [21] [21] Zhang M, Chen M, Li Y, et al. Delayed denervation-induced muscle atrophy in Opg knockout mice[J]. Front Physiol, 2023, 14: 1127474.

    [22] [22] Suarez Rodriguez F, Sanlidag S, Sahlgren C. Mechanical regulation of the Notch signaling pathway[J]. Curr Opin Cell Biol, 2023, 85: 102244.

    [23] [23] Zhou B, Lin W, Long Y, et al. Notch signaling pathway: architecture, disease, and therapeutics[J]. Signal Transduct Target Ther, 2022, 7(1): 95.

    [24] [24] Xu C, Dinh VV, Kruse K, et al. Induction of osteogenesis by bone-targeted Notch activation[J]. Elife, 2022, 11: e60183.

    [26] [26] Padovano C, Bianco SD, Sansico F, et al. The Notch1 signaling pathway directly modulates the human RANKL-induced osteoclastogenesis[J]. Sci Rep, 2023, 13(1): 21199.

    [27] [27] Filipovi M, Flegar D, uur A, et al. Inhibition of Notch signaling stimulates osteoclastogenesis from the common trilineage progenitor under inflammatory conditions[J]. Front Immunol, 2022, 13: 902947.

    [29] [29] Canalis E, Zanotti S, Schilling L, et al. Activation of Notch3 in osteoblasts/osteocytes causes compartment-specific changes in bone remodeling[J]. J Biol Chem, 2021, 296: 100583.

    [30] [30] Peymanfar Y, Su YW, Xian CJ. Notch2 blockade mitigates methotrexate chemotherapy-induced bone loss and marrow adiposity[J]. Cells, 2022, 11(9): 1521.

    [31] [31] Xiang Y, Yang Y, Liu J, et al. Functional role of MicroRNA/PI3K/AKT axis in osteosarcoma[J]. Front Oncol, 2023, 13: 1219211.

    [32] [32] Chai S, Yang Y, Wei L, et al. Luteolin rescues postmenopausal osteoporosis elicited by OVX through alleviating osteoblast pyroptosis via activating PI3K-AKT signaling[J]. Phytomedicine, 2024, 128: 155516.

    [33] [33] Li J, Mai J, Zhang M, et al. Myricitrin promotes osteogenesis and prevents ovariectomy bone mass loss via the PI3K/AKT signalling pathway[J]. J Cell Biochem, 2023, 124(8): 1155-1172.

    [34] [34] Li J, Wei JJ, Wu CH, et al. Epimedin A inhibits the PI3K/AKT/NF-B signalling axis and osteoclast differentiation by negatively regulating TRAF6 expression[J]. Mol Med, 2024, 30(1): 125.

    [35] [35] Li S, Cui Y, Li M, et al. Acteoside derived from cistanche improves glucocorticoid-induced osteoporosis by activating PI3K/AKT/mTOR pathway[J]. J Invest Surg, 2023, 36(1): 2154578.

    [36] [36] Zhang Y, Kou Y, Yang P, et al. ED-71 inhibited osteoclastogenesis by enhancing EphrinB2-EphB4 signaling between osteoclasts and osteoblasts in osteoporosis[J]. Cell Signal, 2022, 96: 110376.

    [37] [37] Wang K, Kou Y, Rong X, et al. ED-71 improves bone mass in ovariectomized rats by inhibiting osteoclastogenesis through EphrinB2-EphB4-RANKL/OPG axis[J]. Drug Des Devel Ther, 2024, 18: 1515-1528.

    [38] [38] Liu J, Xiao Q, Xiao J, et al. Wnt/-catenin signalling: function, biological mechanisms, and therapeutic opportunities[J]. Signal Transduct Target Ther, 2022, 7(1): 3.

    [39] [39] Hu L, Chen W, Qian A, et al. Wnt/-catenin signaling components and mechanisms in bone formation, homeostasis, and disease[J]. Bone Res, 2024, 12(1): 39.

    [40] [40] Yamanouchi D, Igari K. The inhibition of Wnt signaling attenuates RANKL-induced osteoclastogenic macrophage activation[J]. Vasc Biol, 2023, 5(1): e230007.

    [41] [41] Li GF, Gao Y, Weinberg ED, et al. Role of iron accumulation in osteoporosis and the underlying mechanisms[J]. Curr Med Sci, 2023, 43(4): 647-654.

    [43] [43] Xue F, Zhao Z, Gu Y, et al. 7,8-Dihydroxyflavone modulates bone formation and resorption and ameliorates ovariectomy-induced osteoporosis[J]. Elife, 2021, 10: e64872.

    Tools

    Get Citation

    Copy Citation Text

    SHI Min, HUANG Yongyin, LI Hongyu, TANG Qiang. The RANKL/RANK/OPG path crosstalk with other paths role in osteoporosis[J]. International Journal of Orthopaedics, 2025, 46(4): 248

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 26, 2024

    Accepted: Aug. 25, 2025

    Published Online: Aug. 25, 2025

    The Author Email: TANG Qiang (tangqiang1963@163.com)

    DOI:10.3969/j.issn.1673-7083.2025.04.010

    Topics