Chinese Journal of Lasers, Volume. 49, Issue 19, 1914001(2022)

Lithium Niobate Strong-Field Terahertz Source and Its Applications

Xiaojun Wu1,2、*, Zejun Ren1, Deyin Kong1, Sibo Hao3, Mingcong Dai1, Hongting Xiong1, and Peiyan Li1
Author Affiliations
  • 1School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
  • 2Beijing Key Laboratory for Microwave Sensing and Security Applications, Beihang University, Beijing 100191, China
  • 3School of Cyber Science and Technology, Beihang University, Beijing 100191, China
  • show less
    References(119)

    [1] Lee Y S[M]. Principles of terahertz science and technology(2009).

    [2] Elsässer T, Reimann K, Woerner M[M]. Concepts and applications of nonlinear terahertz spectroscopy(2019).

    [3] Fülöp J A, Tzortzakis S, Kampfrath T. Laser-driven strong-field terahertz sources[J]. Advanced Optical Materials, 8, 1900681(2020).

    [4] Gu J Q, Wang K M, Xu Y et al. Metamaterials-based terahertz photoconductive antennas[J]. Chinese Journal of Lasers, 48, 1914004(2021).

    [5] Zhang J, Ban X N, Tian B X et al. Simulation of enhanced terahertz wave generation by interaction between relativistic femtosecond laser and microstructure targets[J]. Chinese Journal of Lasers, 49, 0614002(2022).

    [6] Li Z Y, Yan Q Z, Zhang G G et al. High-frequency terahertz wave generation with cascaded difference frequency generation at polariton resonance[J]. Chinese Journal of Lasers, 49, 0714002(2022).

    [7] Yang K H, Richards P L, Shen Y R. Generation of far-infrared radiation by picosecond light pulses in LiNbO3[J]. Applied Physics Letters, 19, 320-323(1971).

    [8] Hebling J, Almasi G, Kozma I Z et al. Velocity matching by pulse front tilting for large area THz-pulse generation[J]. Optics Express, 10, 1161-1166(2002).

    [9] Stepanov A G, Hebling J, Kuhl J. Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse fronts[J]. Applied Physics Letters, 83, 3000-3002(2003).

    [10] Pálfalvi L, Hebling J, Almási G et al. Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3[J]. Journal of Applied Physics, 95, 902-908(2004).

    [11] Hebling J, Stepanov A G, Almási G et al. Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts[J]. Applied Physics B, 78, 593-599(2004).

    [12] Stepanov A G, Kuhl J, Kozma I Z et al. Scaling up the energy of THz pulses created by optical rectification[J]. Optics Express, 13, 5762-5768(2005).

    [13] Yeh K L, Hoffmann M C, Hebling J et al. Generation of 10 μJ ultrashort terahertz pulses by optical rectification[J]. Applied Physics Letters, 90, 171121(2007).

    [14] Yeh K L, Hebling J, Hoffmann M C et al. Generation of high average power 1 kHz shaped THz pulses via optical rectification[J]. Optics Communications, 281, 3567-3570(2008).

    [15] Stepanov A G, Bonacina L, Chekalin S V et al. Generation of 30 μJ single-cycle terahertz pulses at 100 Hz repetition rate by optical rectification[J]. Optics Letters, 33, 2497-2499(2008).

    [16] Stepanov A G, Henin S, Petit Y et al. Mobile source of high-energy single-cycle terahertz pulses[J]. Applied Physics B, 101, 11-14(2010).

    [17] Fülöp J A, Pálfalvi L, Almási G et al. Design of high-energy terahertz sources based on optical rectification[J]. Optics Express, 18, 12311-12327(2010).

    [18] Hirori H, Doi A, Blanchard F et al. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3[J]. Applied Physics Letters, 98, 091106(2011).

    [19] Hebling J, Yeh K L, Hoffmann M C et al. High-power THz generation, THz nonlinear optics, and THz nonlinear spectroscopy[J]. IEEE Journal of Selected Topics in Quantum Electronics, 14, 345-353(2008).

    [20] Hirori H, Nagai M, Tanaka K. Excitonic interactions with intense terahertz pulses in ZnSe/ZnMgSSe multiple quantum wells[J]. Physical Review B, 81, 081305(2010).

    [21] Hebling J, Hoffmann M C, Hwang H Y et al. Observation of nonequilibrium carrier distribution in Ge, Si, and GaAs by terahertz pump-terahertz probe measurements[J]. Physical Review B, 81, 035201(2010).

    [22] Fülöp J A, Pálfalvi L, Hoffmann M C et al. Towards generation of mJ-level ultrashort THz pulses by optical rectification[J]. Optics Express, 19, 15090-15097(2011).

    [23] Fülöp J A, Pálfalvi L, Klingebiel S et al. Generation of sub-mJ terahertz pulses by optical rectification[J]. Optics Letters, 37, 557-559(2012).

    [24] Fülöp J A, Ollmann Z, Lombosi C et al. Efficient generation of THz pulses with 0.4 mJ energy[J]. Optics Express, 22, 20155-20163(2014).

    [25] Ravi K, Huang W R, Carbajo S et al. Limitations to THz generation by optical rectification using tilted pulse fronts[J]. Optics Express, 22, 20239-20251(2014).

    [26] Wu X J, Carbajo S, Ravi K et al. Terahertz generation in lithium niobate driven by Ti:sapphire laser pulses and its limitations[J]. Optics Letters, 39, 5403-5406(2014).

    [27] Ravi K, Huang W R, Carbajo S et al. Theory of terahertz generation by optical rectification using tilted-pulse-fronts[J]. Optics Express, 23, 5253-5276(2015).

    [28] Wu X J, Zhou C, Huang W R et al. Temperature dependent refractive index and absorption coefficient of congruent lithium niobate crystals in the terahertz range[J]. Optics Express, 23, 29729-29737(2015).

    [29] Wu X J, Calendron A L, Ravi K et al. Optical generation of single-cycle 10 MW peak power 100 GHz waves[J]. Optics Express, 24, 21059-21069(2016).

    [31] Pálfalvi L, Ollmann Z, Tokodi L et al. Hybrid tilted-pulse-front excitation scheme for efficient generation of high-energy terahertz pulses[J]. Optics Express, 24, 8156-8169(2016).

    [32] Ofori-Okai B K, Sivarajah P, Huang W R et al. THz generation using a reflective stair-step echelon[J]. Optics Express, 24, 5057-5068(2016).

    [33] Jang D, Sung J H, Lee S K et al. Generation of 0.7 mJ multicycle 15 THz radiation by phase-matched optical rectification in lithium niobate[J]. Optics Letters, 45, 3617-3620(2020).

    [34] Zhang B L, Ma Z Z, Ma J L et al. 1.4-mJ high energy terahertz radiation from lithium niobates[J]. Laser & Photonics Reviews, 15, 2000295(2021).

    [35] Guiramand L, Nkeck J E, Ropagnol X et al. Near-optimal intense and powerful terahertz source by optical rectification in lithium niobate crystal[J]. Photonics Research, 10, 340-346(2022).

    [36] Hebling J, Yeh K L, Hoffmann M C et al. Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities[J]. Journal of the Optical Society of America B, 25, B6-B19(2008).

    [37] Bartal B, Kozma I Z, Stepanov A G et al. Toward generation of μJ range sub-ps THz pulses by optical rectification[J]. Applied Physics B, 86, 419-423(2007).

    [38] Kleinman D, Auston D. Theory of electrooptic shock radiation in nonlinear optical media[J]. IEEE Journal of Quantum Electronics, 20, 964-970(1984).

    [39] Bakunov M I, Bodrov S B, Tsarev M V. Terahertz emission from a laser pulse with tilted front: phase-matching versus Cherenkov effect[J]. Journal of Applied Physics, 104, 073105(2008).

    [40] Bakunov M I, Bodrov S B, Mashkovich E A. Terahertz generation with tilted-front laser pulses: dynamic theory for low-absorbing crystals[J]. Journal of the Optical Society of America B, 28, 1724-1734(2011).

    [41] Vodopyanov K L. Optical generation of narrow-band terahertz packets in periodically inverted electro-optic crystals: conversion efficiency and optimal laser pulse format[J]. Optics Express, 14, 2263-2276(2006).

    [42] Hattori T, Takeuchi K. Simulation study on cascaded terahertz pulse generation in electro-optic crystals[J]. Optics Express, 15, 8076-8093(2007).

    [43] Jewariya M, Nagai M, Tanaka K. Enhancement of terahertz wave generation by cascaded χ(2) processes in LiNbO3[J]. Journal of the Optical Society of America B, 26, A101-A106(2009).

    [44] Ravi K, Kärtner F. Analysis of terahertz generation using tilted pulse fronts[J]. Optics Express, 27, 3496-3517(2019).

    [45] Wang L, Kroh T, Matlis N H et al. Full 3D+1 modeling of the tilted-pulse-front setups for single-cycle terahertz generation[J]. Journal of the Optical Society of America B, 37, 1000-1007(2020).

    [46] Bakunov M I, Bodrov S B. Full 3D+1 modeling of tilted-pulse-front setups for single-cycle terahertz generation: comment[J]. Journal of the Optical Society of America B, 38, 2587-2589(2021).

    [47] Bodrov S B, Murzanev A A, Sergeev Y A et al. Terahertz generation by tilted-front laser pulses in weakly and strongly nonlinear regimes[J]. Applied Physics Letters, 103, 251103(2013).

    [48] Wu X J, Ma J L, Zhang B L et al. Highly efficient generation of 0.2 mJ terahertz pulses in lithium niobate at room temperature with sub-50 fs chirped Ti:sapphire laser pulses[J]. Optics Express, 26, 7107-7116(2018).

    [49] Tóth G, Pálfalvi L, Turnár S et al. Performance comparison of lithium-niobate-based extremely high-field single-cycle terahertz sources[J]. Chinese Optics Letters, 19, 111902(2021).

    [50] Pálfalvi L, Hebling J, Kuhl J et al. Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range[J]. Journal of Applied Physics, 97, 123505(2005).

    [51] Sutherland R L, McLean D G, Kirkpatrick S[M]. Handbook of nonlinear optics(2003).

    [52] Hebling J. Derivation of the pulse front tilt caused by angular dispersion[J]. Optical and Quantum Electronics, 28, 1759-1763(1996).

    [53] Wang L, Tóth G, Hebling J et al. Tilted-pulse-front schemes for terahertz generation[J]. Laser and Photonics Reviews, 14, 2000021(2020).

    [54] Deiterding R, Glowinski R, Oliver H et al. A reliable split-step Fourier method for the propagation equation of ultra-fast pulses in single-mode optical fibers[J]. Journal of Lightwave Technology, 31, 2008-2017(2013).

    [55] Balac S, Mahé F. Embedded Runge-Kutta scheme for step-size control in the interaction picture method[J]. Computer Physics Communications, 184, 1211-1219(2013).

    [56] Fallahi A. Terahertz acceleration technology towards compact light sources[C](2021).

    [57] Tang H, Zhao L R, Zhu P F et al. Stable and scalable multistage terahertz-driven particle accelerator[J]. Physical Review Letters, 127, 074801(2021).

    [58] Chen Z, Zhou X B, Werley C A et al. Generation of high power tunable multicycle teraherz pulses[J]. Applied Physics Letters, 99, 071102(2011).

    [59] Tian Q L, Xu H X, Wang Y et al. Efficient generation of a high-field terahertz pulse train in bulk lithium niobate crystals by optical rectification[J]. Optics Express, 29, 9624-9634(2021).

    [60] Siders C W, Siders J L, Taylor A J et al. Efficient high-energy pulse-train generation using a 2n-pulse Michelson interferometer[J]. Applied Optics, 37, 5302-5305(1998).

    [61] Zhang B L, Wu X J, Wang X et al. Efficient multicycle terahertz pulse generation based on the tilted pulse-front technique[J]. Optics Letters, 47, 2678-2681(2022).

    [62] Ahr F, Jolly S W, Matlis N H et al. Narrowband terahertz generation with chirped-and-delayed laser pulses in periodically poled lithium niobate[J]. Optics Letters, 42, 2118-2121(2017).

    [63] Carbajo S, Schulte J, Wu X J et al. Efficient narrowband terahertz generation in cryogenically cooled periodically poled lithium niobate[J]. Optics Letters, 40, 5762-5765(2015).

    [64] Jolly S W, Matlis N H, Ahr F et al. Spectral phase control of interfering chirped pulses for high-energy narrowband terahertz generation[J]. Nature Communications, 10, 2591(2019).

    [65] Lemery F, Vinatier T, Mayet F et al. Highly scalable multicycle THz production with a homemade periodically poled macrocrystal[J]. Communications Physics, 3, 150(2020).

    [66] Tian W L, Cirmi G, Olgun H T et al. μJ-level multi-cycle terahertz generation in a periodically poled Rb:KTP crystal[J]. Optics Letters, 46, 741-744(2021).

    [67] Hamazaki J, Ogawa Y, Kishimoto T et al. Conversion efficiency improvement of terahertz wave generation laterally emitted by a ridge-type periodically poled lithium niobate[J]. Optics Express, 30, 11472-11478(2022).

    [68] Kampfrath T, Tanaka K, Nelson K A. Resonant and nonresonant control over matter and light by intense terahertz transients[J]. Nature Photonics, 7, 680-690(2013).

    [69] Hoffmann M C, Hebling J, Hwang H Y et al. Impact ionization in InSb probed by terahertz pump-terahertz probe spectroscopy[J]. Physical Review B, 79, 161201(2009).

    [70] Hoffmann M C, Hebling J, Hwang H Y et al. THz-pump/THz-probe spectroscopy of semiconductors at high field strengths[J]. Journal of the Optical Society of America B, 26, A29-A34(2009).

    [71] Pein B C, Chang W D, Hwang H Y et al. Terahertz-driven luminescence and colossal Stark effect in CdSe-CdS colloidal quantum dots[J]. Nano Letters, 17, 5375-5380(2017).

    [72] Tarekegne A T, Hirori H, Tanaka K et al. Impact ionization dynamics in silicon by MV/cm THz fields[J]. New Journal of Physics, 19, 123018(2017).

    [73] Raab J, Mezzapesa F P, Viti L et al. Ultrafast terahertz saturable absorbers using tailored intersubband polaritons[J]. Nature Communications, 11, 4290(2020).

    [74] Heindl M B, Kirkwood N, Lauster T et al. Ultrafast imaging of terahertz electric waveforms using quantum dots[J]. Light: Science & Applications, 11, 5(2022).

    [75] Liu M K, Hwang H Y, Tao H et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial[J]. Nature, 487, 345-348(2012).

    [76] Matsunaga R, Tsuji N, Fujita H et al. Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor[J]. Science, 345, 1145-1149(2014).

    [77] Zhu Y, Chen F, Park J et al. Structural imaging of nanoscale phonon transport in ferroelectrics excited by metamaterial-enhanced terahertz fields[J]. Physical Review Materials, 1, 060601(2017).

    [78] Reimann J, Schlauderer S, Schmid C P et al. Subcycle observation of lightwave-driven Dirac currents in a topological surface band[J]. Nature, 562, 396-400(2018).

    [79] Li X, Qiu T, Zhang J H et al. Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO3[J]. Science, 364, 1079-1082(2019).

    [81] Kovalev S, Dantas R M A, Germanskiy S et al. Non-perturbative terahertz high-harmonic generation in the three-dimensional Dirac semimetal Cd3As2[J]. Nature Communications, 11, 2451(2020).

    [82] Shi J J, Baldini E, Latini S et al. Room temperature terahertz electroabsorption modulation by excitons in monolayer transition metal dichalcogenides[J]. Nano Letters, 20, 5214-5220(2020).

    [83] Schmid C P, Weigl L, Grössing P et al. Tunable non-integer high-harmonic generation in a topological insulator[J]. Nature, 593, 385-390(2021).

    [84] Bonetti S, Hoffmann M C, Sher M J et al. THz-driven ultrafast spin-lattice scattering in amorphous metallic ferromagnets[J]. Physical Review Letters, 117, 087205(2016).

    [85] Schlauderer S, Lange C, Baierl S et al. Temporal and spectral fingerprints of ultrafast all-coherent spin switching[J]. Nature, 569, 383-387(2019).

    [86] Mashkovich E A, Grishunin K A, Mikhaylovskiy R V et al. Terahertz optomagnetism: nonlinear THz excitation of GHz spin waves in antiferromagnetic FeBO3[J]. Physical Review Letters, 123, 157202(2019).

    [87] Chekhov A L, Behovits Y, Heitz J J F et al. Ultrafast demagnetization of iron induced by optical versus terahertz pulses[J]. Physical Review X, 11, 041055(2021).

    [88] Mashkovich E A, Grishunin K A, Dubrovin R M et al. Terahertz light-driven coupling of antiferromagnetic spins to lattice[J]. Science, 374, 1608-1611(2021).

    [89] Damari R, Weinberg O, Krotkov D et al. Strong coupling of collective intermolecular vibrations in organic materials at terahertz frequencies[J]. Nature Communications, 10, 3248(2019).

    [90] Peller D, Kastner L Z, Buchner T et al. Sub-cycle atomic-scale forces coherently control a single-molecule switch[J]. Nature, 585, 58-62(2020).

    [91] Wimmer L, Herink G, Solli D R et al. Terahertz control of nanotip photoemission[J]. Nature Physics, 10, 432-436(2014).

    [92] Nanni E A, Huang W R, Hong K H et al. Terahertz-driven linear electron acceleration[J]. Nature Communications, 6, 8486(2015).

    [93] Huang W R, Nanni E A, Ravi K et al. Toward a terahertz-driven electron gun[J]. Scientific Reports, 5, 14899(2015).

    [94] Huang W R, Fallahi A, Wu X J et al. Terahertz-driven, all-optical electron gun[J]. Optica, 3, 1209-1212(2016).

    [95] Hibberd M T, Healy A L, Lake D S et al. Acceleration of relativistic beams using laser-generated terahertz pulses[J]. Nature Photonics, 14, 755-759(2020).

    [96] Kealhofer C, Schneider W, Ehberger D et al. All-optical control and metrology of electron pulses[J]. Science, 352, 429-433(2016).

    [97] Curry E, Fabbri S, Maxson J et al. Meter-scale terahertz-driven acceleration of a relativistic beam[J]. Physical Review Letters, 120, 094801(2018).

    [98] Snively E C, Othman M A K, Kozina M et al. Femtosecond compression dynamics and timing jitter suppression in a THz-driven electron bunch compressor[J]. Physical Review Letters, 124, 054801(2020).

    [99] Zhao L R, Wang Z, Lu C et al. Terahertz streaking of few-femtosecond relativistic electron beams[J]. Physical Review X, 8, 021061(2018).

    [100] Zhao L R, Wang Z, Tang H et al. Terahertz oscilloscope for recording time information of ultrashort electron beams[J]. Physical Review Letters, 122, 144801(2019).

    [101] Zhou C L, Bai Y F, Song L W et al. Direct mapping of attosecond electron dynamics[J]. Nature Photonics, 15, 216-221(2021).

    [102] Zhang D F, Fallahi A, Hemmer M et al. Segmented terahertz electron accelerator and manipulator (STEAM)[J]. Nature Photonics, 12, 336-342(2018).

    [103] Zhang D F, Fallahi A, Hemmer M et al. Femtosecond phase control in high-field terahertz-driven ultrafast electron sources[J]. Optica, 6, 872-877(2019).

    [104] Zhang D F, Fakhari M, Cankaya H et al. Cascaded multi-cycle terahertz driven ultrafast electron acceleration and manipulation[J]. Physical Review X, 10, 011067(2020).

    [105] Xu H X, Yan L X, Du Y C et al. Cascaded high-gradient terahertz-driven acceleration of relativistic electron beams[J]. Nature Photonics, 15, 426-430(2021).

    [106] Amini T, Jahangiri F, Ameri Z et al. A review of feasible applications of THz waves in medical diagnostics and treatments[J]. Journal of Lasers in Medical Sciences, 12, e92(2021).

    [107] Peralta X G, Lipscomb D, Wilmink G J et al. Terahertz spectroscopy of human skin tissue models with different melanin content[J]. Biomedical Optics Express, 10, 2942-2955(2019).

    [108] Wang X D, Song Z X, Li Y et al. Review of DNA detection and application based on THz spectroscopy[J]. Laser & Optoelectronics Progress, 57, 170003(2020).

    [109] Greschner A A, Ropagnol X, Kort M et al. Room-temperature and selective triggering of supramolecular DNA assembly/disassembly by nonionizing radiation[J]. Journal of the American Chemical Society, 141, 3456-3469(2019).

    [110] Zhang C, Yuan Y F, Wu K J et al. Driving DNA origami assembly with a terahertz wave[J]. Nano Letters, 22, 468-475(2022).

    [111] Nemova E F, Cherkasova O P, Nikolaev N A et al. A study on molecular mechanisms of terahertz radiation interaction with biopolymers based on the example of bovine serum albumin[J]. Biophysics, 65, 410-415(2020).

    [112] Yamazaki S, Harata M, Ueno Y et al. Propagation of THz irradiation energy through aqueous layers: demolition of actin filaments in living cells[J]. Scientific Reports, 10, 9008(2020).

    [113] Hough C M, Purschke D N, Bell C et al. Disassembly of microtubules by intense terahertz pulses[J]. Biomedical Optics Express, 12, 5812-5828(2021).

    [114] Bogomazova A N, Vassina E M, Goryachkovskaya T N et al. No DNA damage response and negligible genome-wide transcriptional changes in human embryonic stem cells exposed to terahertz radiation[J]. Scientific Reports, 5, 7749(2015).

    [115] Tachizaki T, Sakaguchi R, Terada S et al. Terahertz pulse-altered gene networks in human induced pluripotent stem cells[J]. Optics Letters, 45, 6078-6081(2020).

    [116] Hwang Y, Ahn J, Mun J et al. In vivo analysis of THz wave irradiation induced acute inflammatory response in skin by laser-scanning confocal microscopy[J]. Optics Express, 22, 11465-11475(2014).

    [117] Kim K T, Park J, Jo S J et al. High-power femtosecond-terahertz pulse induces a wound response in mouse skin[J]. Scientific Reports, 3, 2296(2013).

    [118] Zhang B, Li S, Chai S et al. Nonlinear distortion and spatial dispersion of intense terahertz generation in lithium niobate via the tilted pulse front technique[J]. Photonics Research, 6, 959(2018).

    [119] Dong T, Li S, Manjappa M et al. Nonlinear THz-nano metasurfaces[J]. Advanced Functional Materials, 31, 2100463(2021).

    Tools

    Get Citation

    Copy Citation Text

    Xiaojun Wu, Zejun Ren, Deyin Kong, Sibo Hao, Mingcong Dai, Hongting Xiong, Peiyan Li. Lithium Niobate Strong-Field Terahertz Source and Its Applications[J]. Chinese Journal of Lasers, 2022, 49(19): 1914001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: terahertz technology

    Received: May. 24, 2022

    Accepted: Jul. 20, 2022

    Published Online: Sep. 20, 2022

    The Author Email: Wu Xiaojun (xiaojunwu@buaa.edu.cn)

    DOI:10.3788/CJL202249.1914001

    Topics