Chinese Journal of Lasers, Volume. 42, Issue 10, 1003002(2015)

Study of Micro-Scale Laser Shock Processing without Coating Improving the High Cycle Fatigue Performance of K24 Simulated Blades

Jiao Yang*, He Weifeng, Luo Sihai, Zhou Liucheng, and Li Yinghong
Author Affiliations
  • [in Chinese]
  • show less
    References(21)

    [1] [1] Lu Jinzhong, Zhang Yongkang, Gu Wei, et al.. Residual stress of K24 superalloy surface by laser multiple processing[J]. Journal of Jilin University (Engineering and Technology Edition), 2008, 38(2): 309-313.

    [2] [2] 《Chinese aviation material manual》editorial board. Chinese Aviation Material Manual Second Volume[M]. Beijing: China Standards Press, 2001: 645-651.

    [3] [3] Sun Ruijie, Yan Xiaojun. New characteristics of fatigue-creep tests on serration of turbine blades[J]. Journal of Aerospace Power, 2007, 22(3): 419-424.

    [4] [4] Cowles B A. High cycle fatigue in aircraft gas turbines-an industry perspective[J]. International Journal of Fractrue. 1996, 80(2-3): 147-163.

    [5] [5] Fairand B P, Wilcox B A, Gallaghtr W J, et al.. Laser shock-induced microstructural and mechanical property changes in 7075 aluminum[J]. Journal of Applied Physics, 1972, 43(9): 3893-3895.

    [6] [6] Nie Xiangfan, He Weifeng, Zang Shunlai, et al.. Experimental study on improving high-cycle fatigue performance of TC11 titanium alloy by laser shock peening[J]. Chinese J Lasers, 2013, 40(8): 0803006.

    [7] [7] Luo Sihai, He Weifeng, Zhou Liucheng, et al.. Effects of laser shock processing on high temperature fatigue properties and fracture morphologies of K403 nickel-based alloy[J]. Chinese J Lasers, 2014, 41(9): 0903001.

    [8] [8] Li Yuqin, Li Yinghong, He Weifeng, et al.. Wear resistance of 12CrNi3A steel after carburization and laser shock[J]. Chinese J Lasers, 2013, 40(9): 0903004.

    [9] [9] Luo Mi, Luo Kaiyu, Wang Qingwei, et al.. Numerical simulation of laser shock peening on residual stress field of 7075- T6 aluminum alloy welding[J]. Acta Optica Sinica, 2014, 34(4): 0414003.

    [10] [10] Sano Y, Obata M, Kubo T, et al.. Retardation of crack initiation and growth in austenitic stainless steels by laser peening without protective coating[J]. Materials Science and Engineering; A, 2006, 417(1-2): 334-340.

    [11] [11] Sano Y, Mukai N, Okazaki K, et al.. Residual stress improvement in metal surface by under- water laser irradiation[J]. Nuclear Instruments and Methods in Physics Research B Beam Interaction with Materials and Atoms, 1997, 121(1-4): 432-436.

    [12] [12] Maawad E, Sano Y, Wagner L, et al.. Investigation of laser shock peening effects on residual stress state and fatigue performance of titanium alloys[J]. Materials Science and Engineering; A, 2012, 536: 82-91.

    [13] [13] Sano Y, Masaki K, Gushi T, et al.. Improvement in fatigue performance of friction stir welded A6061-T6 aluminum alloy by laser peening without coating[J]. Materials and Design, 2012, 36: 809-814.

    [14] [14] Sakino Y, Sano Y, Kim Y. Application of laser peening without coating on steel welded joints[J]. International Journal of Structural Integrity, 2011, 2(3): 332-344.

    [15] [15] Kalainathan S, Sathyajith S, Swaroop S. Effect of laser shot peening without coating on the surface properties and corrosion behavior of 316L steel[J]. Optics and Lasers in Engineering, 2012, 50(12): 1740-1745.

    [16] [16] Sathyajith S, Kalainathan S, Swaroop S. Laser peening without coating on aluminum alloy Al-6061-T6 using low energy Nd∶YAG laser[J]. Optics & Laser Technology, 2013, 45: 389-394.

    [17] [17] Trdan U, Porro J A, Ocana J L, et al.. Laser shock peening without absorbent coating (LSPwC) effect on 3D surface topography and mechanical properties of 6082-T651 Al alloy[J]. Surface & Coatings Technology, 2012, 208: 109-116.

    [18] [18] Rodopoulos C A, Rios E R D L. Theoretical analysis on the behaviour of short fatigue cracks[J]. International Journal of Fatigue, 2002, 24(7): 719-724.

    [19] [19] Nie Xiangfan, He Weifeng, Li Qipeng, et al.. Improvement of structure and mechanical properties of TC6 titanium alloy with laser shock peening[J]. High Power Laser and Particle Beams, 2013, 25(5): 1115-1119.

    [21] [21] Wang Ya′nan, Chen Shujiang, Dong xichun. Dislocation Theory and Application[M]. Beijing: Metallurgical Industry Press, 2007.

    CLP Journals

    [1] Zhiwei Huang, Xingquan Zhang, Bin Chen, Jinyu Tong, Guangwu Fang, Shiwei Duan. Distribution Characteristic of Residual Stress in Aluminum Target Irradiated Directly by High Power Laser[J]. Laser & Optoelectronics Progress, 2018, 55(2): 021409

    [2] Xie Mengyun, Wang Cheng, Zhang Peiyu, Ming Jiqing, Chen Hui. Effects of LSPwC on microstructure and properties of GH3044 turbine case[J]. Infrared and Laser Engineering, 2018, 47(4): 406005

    [3] You Xi, Nie Xiangfan, He Weifeng, Li Donglin. Parameter Identification of Constitutive Model at High Strain Rate for TC17 Titanium Alloy Under Shock Wave Induced by Nanosecond Pulsed Lasers[J]. Chinese Journal of Lasers, 2016, 43(8): 802003

    Tools

    Get Citation

    Copy Citation Text

    Jiao Yang, He Weifeng, Luo Sihai, Zhou Liucheng, Li Yinghong. Study of Micro-Scale Laser Shock Processing without Coating Improving the High Cycle Fatigue Performance of K24 Simulated Blades[J]. Chinese Journal of Lasers, 2015, 42(10): 1003002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 20, 2015

    Accepted: --

    Published Online: Sep. 24, 2022

    The Author Email: Yang Jiao (young_joeafeu@163.com)

    DOI:10.3788/cjl201542.1003002

    Topics