Journal of Quantum Optics, Volume. 31, Issue 1, 10701(2025)
Low Intensity Light Frequency Conversion Based on PPLN Waveguide and Noises Analysis
[1] [1] CIRAC J I, ZOLLER P, KIMBLE H J, et al. Quantum state transfer and entanglement distribution among distant nodes in a quantum network[J]. Phys Rev Lett, 1997, 78(16):3221-3224. DOI: 10.1103/PhysRevLett.78.3221.
[2] [2] KIMBLE H J. The quantum internet[J]. Nature, 2008, 453:1023. DOI: https://doi.org/10.1038/nature07127.
[3] [3] KUMAR P. Qanrum frequency conversion[J]. Opt Lett, 1990, 15:1476. DOI: 10.1364/OL.15.001476.
[4] [4] HUANG J, KUMAR P. Observation of quantum frequency conversion[J]. Phys Rev Lett, 1992, 68:2153. DOI: 10.1103/Phys-RevLett.68.2153.
[5] [5] LEENT T, BOCK M, GARTHOFF R, et al. Long-distance distribution of atom-Photon entanglement at telecom wavelength[J]. Phys Rev Lett, 2020, 124:010510. DOI: 10.1103/PHYSREVLETT.124.010510.
[6] [6] ZASKE S, LENHARD A, KELER C A, et al. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter[J]. Phys Rev Lett, 2012, 109(14):147404. DOI: 10.1103/PhysRevLett.109.147404.
[7] [7] ATES S, AGHA I, GULINATTI A, et al. Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot[J]. Phys Rev Lett, 2012, 109(14):147405. DOI: 10.1103/PhysRevLett.109.147405.
[8] [8] MARING N, FARRERA P, KUTLUER K, et al. Photonic quantum state transfer between a cold atomic gas and a crystal[J]. Nature, 2017, 551:485-488. DOI: 10.1038/nature24468.
[9] [9] KUO P S, PELC J S, SLATTERY O, et al. Reducing noise in single-photon-level frequency conversion[J]. Opt Lett, 2013, 38(8):1310-1312. DOI: 10.1364/OL.38.001310.
[10] [10] KUO P S, PELC J S, LANGROCK C, et al. Using temperature to reduce noise in quantum frequency conversion[J]. Opt Lett, 2018, 43(9):2034-2037. DOI: 10.1364/OL.43.002034.
[11] [11] HUANG K, GU X R, REN M, et al. Photon-number-resolving detection at 1.04 m via coincidence frequency upconversion[J]. Opt Lett, 2011, 36(9):1722-1724. DOI: 10.1364/OL.36.001722.
[12] [12] MA F, LIANG L Y, CHEN J P, et al. Upconversion single-photon detectors based on integrated periodically poled lithium niobate waveguides[J]. J Opt Soc Am B, 2018, 35(9):2096-2101. DOI: 10.1364/JOSAB.35.002096.
[13] [13] ZHANG K, HE J, WANG J M. Two-way single-photon-level frequency conversion between 852 nm and 1560 nm for connecting cesium D2 line with telecom C-band[J]. Opt Express, 2020, 28(19):27785-27796. DOI: 10.1364/OE.402355.
[14] [14] GUO M, ZHANG K, ZHANG Y H, et al. Improving the signal-to-noise ratio of photonic frequency conversion from 852 nm to 1560 nm based on a long-wavelength laser-pumped PPLN waveguide module[J]. Photonics, 2022, 9(12):971. DOI: 10.3390/photonics9120971.
[15] [15] KERDONCUF H, CHRISTENSEN J B, LASSEN M. Quantum frequency conversion of vacuum squeezed light to bright tunable blue squeezed light and higher-order spatial modes[J]. Opt Express, 2021, 29(19):29828-29840. DOI: 10.1364/OE.436325.
[16] [16] LEENT T, BOCK M, FERTIG F, et. al. Entangling single atoms over 33 km telecom fiber[J]. Nature, 2022, 607:69-73. DOI: 10.1038/s41586-022-04764-4.
[17] [17] STRASSMANN P C, MARTIN A, GRISIN N, et al. Spectral noise in frequency conversion from the visible to the telecommunication C-band[J]. Opt Express, 2019, 27(10):14298-14307. DOI: 10.1364/OE.27.014298.
[18] [18] BRUNETTI G, SASANELLI N, ARMENISE M, et al. High performance and tunable optical pump-rejection filter for quantum photonic systems[J]. Opt Laser Technol, 2021, 139:106978. DOI: 10.1016/j.optlastec.2021.106978.
[19] [19] FAN H, MA Z, CHEN J, et al. Photon conversion in thin-film lithium niobate nanowaveguides: a noise analysis[J]. J Opt Soc Am B, 2021, 38(7):2172. DOI: 10.1364/JOSAB.425318.
[20] [20] ZASKE S, LENHARD A, BECKER C. Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band[J]. Opt Express, 2011, 19(13):12825-12836. DOI: 10.1364/OE.19.012825.
Get Citation
Copy Citation Text
ZHANG Kong, LI Zhixiu. Low Intensity Light Frequency Conversion Based on PPLN Waveguide and Noises Analysis[J]. Journal of Quantum Optics, 2025, 31(1): 10701
Category:
Received: Oct. 10, 2024
Accepted: Apr. 17, 2025
Published Online: Apr. 17, 2025
The Author Email: ZHANG Kong (zhangkong@jzxy.edu.cn)