Laser & Infrared, Volume. 55, Issue 2, 250(2025)
Infrared image anomaly detection algorithm of insulator based on FRAD
[7] [7] Bergmann P, Fauser M, Sattlegger D, et al. MVTec AD—a comprehensive real-world dataset for unsupervised anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 9592-9600.
[10] [10] Cai Y, Bian H, Lin J, et al. Retinexformer: one-stage retinex-based transformer for low-light image enhancement[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023: 12504-12513.
[11] [11] Kingma D P, Welling M. Auto-encoding variational bayes[J]. arXiv preprint arXiv: 1312.6114, 2013.
[12] [12] Dehaene D, Frigo O, Combrexelle S, et al. Iterative energy-based projection on a normal data manifold for anomaly localization[J]. arXiv preprint arXiv: 2002.03734, 2020.
[13] [13] Schlegl T, Seebck P, Waldstein S M, et al. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery[C]//International Conference on Information Processing in Medical Imaging, Cham: Springer International Publishing, 2017: 146-157.
[14] [14] Schlegl T, Seebck P, Waldstein S M, et al. F-AnoGAN: fast unsupervised anomaly detection with generative adversarial networks[J]. Medical Image Analysis, 2019, 54: 30-44.
[15] [15] Akcay S, Atapour-Abarghouei A, Breckon T P. Ganomaly: semi-supervised anomaly detection via adversarial training[C]//Computer Vision-ACCV 2018: 14th Asian Conference on Computer Vision, Perth, Australia, December 2-6, 2018, Revised Selected Papers, Part III 14. Springer International Publishing, 2019: 622-637.
[16] [16] Salehi M, Sadjadi N, Baselizadeh S, et al. Multiresolution knowledge distillation for anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 14902-14912.
[17] [17] Xiang T, Zhang Y, Lu Y, et al. Squid: Deep feature in-painting for unsupervised anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 23890-23901.
[18] [18] Gong D, Liu L, Le V, et al. Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection[C]//Proceedings of the IEEE/CVF International Conference on Computer vision, 2019: 1705-1714.
[19] [19] Park H, Noh J, Ham B. Learning memory-guided normality for anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 14372-14381.
[20] [20] Woo S, Park J, Lee J Y, et al. Cbam: Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[21] [21] Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv preprint arXiv: 1511.06434, 2015.
[22] [22] Reiss T, Cohen N, Bergman L, et al. Panda: adapting pretrained features for anomaly detection and segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 2806-2814.
Get Citation
Copy Citation Text
LI Hong, ZHENG Hao-liang, LIU Zhao-wei, JIA Zhi-wei, SUN Chen-hao. Infrared image anomaly detection algorithm of insulator based on FRAD[J]. Laser & Infrared, 2025, 55(2): 250
Category:
Received: Apr. 24, 2024
Accepted: Apr. 3, 2025
Published Online: Apr. 3, 2025
The Author Email: