Laser Technology, Volume. 43, Issue 1, 119(2019)

Image segmentation of 2-D maximum entropy based on the improved genetic algorithm

LI Lihong* and HUA Guoguang
Author Affiliations
  • [in Chinese]
  • show less
    References(29)

    [1] [1] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems Man and Cybernetics, 1979, 9(1):62-66.

    [2] [2] SONG B, YANG H X, CENG J F, et al. 2-D minimum error threshold segmentation method based on mean absolute deviation from the median[J]. Laser Technology, 2015, 39(5): 717-722(in Chinese).

    [3] [3] ZHENG W, ZHANG J, LI K X, et al. Improved active contour segmentation model based on phase consistency[J]. Laser Technology,2016,40(2): 296-302(in Chinese).

    [4] [4] LAKSHMI S, SANKARANARAYANAN D V.A study of edge detection techniques for segmentation computing approaches[J]. International Journal of Computer Applications,2011, Special Issue on CASCT(1):35-41.

    [5] [5] CANNY J. A computational approach to edge detection[J].IEEE Transactions on Pattern Analysis and Machine intelligence, 1986, 8(6): 184-203.

    [6] [6] DAVIS L S. A survey of edge detection techniques[J]. Computer Graphics and Image Processing, 1975, 4(3):248-270.

    [7] [7] KESAVAN H, KAPUR J N. The generalized maximum entropy principle[J]. IEEE Transactions on Systems Man and Cybernetics , 1989, 19(5):1042-1052.

    [8] [8] DOYLE W. Operations useful for similarity-invariant pattern recognition[J]. Journal of the ACM, 1962, 9(2):259-267.

    [9] [9] ABUTALEB A S. Automatic thresholding of gray-level pictures using two-dimensional entropy[J]. Computer Vision Graphics and Image Processing, 1989, 47(1):22-32.

    [10] [10] WANG Ch H, LI L, LI Y Sh et al. Seeking of tissue image digging point method based on genetic-arithmetic[J]. Optics and Precision Engineering, 2005, 13(2):231-236(in Chinese).

    [11] [11] ANTONIOL G, CECCARELLI M. Microarray image gridding with stochastic search based approaches[J]. Image and Vision Computing, 2007, 25(2):155-163.

    [12] [12] CHONG J S, ZHOU X K, WANG H Q, et al. Image thresholding segmentation based on genetic algorithm[J]. Journal of Electronics and Information Technology, 2000, 22(5):785-790(in Chinese).

    [13] [13] MO L. Study on image segmentation based on RGB color image[J].Computer Science, 2016, 43(s1):168-170(in Chinese).

    [14] [14] CHANG Q, WANG L, XING Ch, et al. The selection of image threshold on the basis of genetic algorithms[J]. Computer Engineering & Applications, 2002, 38(22):35-37(in Chinese).

    [15] [15] HAN S Q, WANG L. A survey of thresholding methods for image segmentation[J]. Systems Engineering and Electronics, 2002, 24(6): 91-94(in Chinese).

    [16] [16] LIN Q, DONG P, LIN J Y. A survey on graph cut techniques[J]. Microprocessors, 2015,2015(1):35-39(in Chinese).

    [17] [17] HOLLAND J H. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence[J]. Quarterly Review of Biology, 1992, 6(2):126-137.

    [18] [18] JIN J L, YANG X H, DING J. An improved simple genetic algorithm—accelerating genetic algorithm[J]. Systems Engineering-theory & Practice, 2001, 21(4):8-13(in Chinese).

    [19] [19] PENCE C H. Is genetic drift a force [J]. Synthese, 2017, 194(6):1967-1988.

    [20] [20] SRINIVAS M, PATNAIK L M. Genetic algorithms: A survey[J]. IEEE Computer, 2002, 27(6):17-26.

    [21] [21] LEE S W, LEE D J, PARK H S. A new methodology for gray-scale character segmentation and recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(10): 1045-1050.

    [22] [22] ROWE J E. Genetic algorithm theory[C]//Genetic and Evolutionary Computation Conference. Philadelphia, PA, USA: Association for Computing Machinery, 2011:1029-1052.

    [23] [23] WANG X P, CAO L M. Genetic algorithm: theory, application and software implementation [M]. Xi’an: Xi’an Jiaotong University Press, 2002:18-51(in Chinese).

    [24] [24] ZHANG H J, ZHAO J, LUO H. A method combining genetic algorithm with simultaneous perturbation stochastic approximation for linearly constrained stochastic optimization problems[J].Journal of Combinatorial Optimization, 2016,31(3):979-995.

    [25] [25] AYO B S. An improved genetic algorithm for flight path re-routes with reduced passenger impact[J]. Journal of Computer & Communications,2017, 5(7):65-75.

    [26] [26] CHEN L P, CHEN X Y, WANG S, et al. Foreign fiber image segmentation based on maximum entropy and genetic algorithm[J]. Journal of Computer and Communications, 2017, 3(11):1-7.

    [27] [27] WANG H W, LIANG Y Y, WANG Zh H. Otsu image threshold segmentation method based on new genetic algorithm [J]. Laser Technology, 2014, 38(3): 364-367(in Chinese).

    [28] [28] POTTS J C, GIDDENS T D, YADAV S B. The development and evaluation of an improved genetic algorithm based on migration and artificial selection[J]. IEEE Transactions on Systems Man & Cybernetics, 1994, 24(1):73-86.

    [29] [29] YANG Q W, JIANG J P, ZHANG G H. Improvement of the speed of genetic algorithm optimization [J]. Software Journal, 2001, 12 (2): 270-275(in Chinese).

    Tools

    Get Citation

    Copy Citation Text

    LI Lihong, HUA Guoguang. Image segmentation of 2-D maximum entropy based on the improved genetic algorithm[J]. Laser Technology, 2019, 43(1): 119

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 12, 2018

    Accepted: --

    Published Online: Jan. 22, 2019

    The Author Email: LI Lihong (lilihgg@163.com)

    DOI:10.7510/jgjs.issn.1001-3806.2019.01.024

    Topics