Journal of Geo-information Science, Volume. 22, Issue 4, 887(2020)

Explaining Street Contact Crime based on Dynamic Spatio-Temporal Distribution of Potential Targets

Lin LIU1,1,2,2,3,3,4,4、*, Siyi LIANG1,1,2,2, and Guangwen SONG3,3
Author Affiliations
  • 1School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China
  • 1中山大学地理科学与规划学院,广州 510275
  • 2Guangdong Provincial Engineering Research Center for Public Security and Disaster, Guangzhou 510275, China
  • 2广东省公共安全与灾害工程技术研究中心,广州 510275
  • 3Center of Geographic Information Analysis for Public Security, School of Geographic Sciences, Guangzhou 510006, China
  • 3广州大学地理科学学院公共安全地理信息分析中心,广州 510006
  • 4Department of Geography, University of Cincinnati, Cincinnati OH 45221-0131, USA
  • 4辛辛那提大学地理系,辛辛那提 OH 45221-0131
  • show less
    Figures & Tables(6)
    Land use map of the study area
    Conceptual framework of explaining street contact crime based on routine activity theory
    Hourly change of XT street contact crime count
    Kernel density map of street contact crime and WeChat population for different time intervals
    • Table 1. Descriptive statistics of dependent and independent variables

      View table
      View in Article

      Table 1. Descriptive statistics of dependent and independent variables

      变量平均值方差最小值最大值
      街面接触型犯罪数量/件
      00:00—06:591.167.34029
      07:00—17:591.122.7709
      18:00—23:591.084.50015
      微信人口(百人)
      00:00—06:597.2144.160.2933.12
      07:00—17:5929.34427.870.8097.16
      18:00—23:5917.37178.590.6465.53
      餐饮点/个0.701.6208
      网吧/个0.080.1303
      健身房/个0.020.0201
      KTV/个0.010.0802
      休闲会所/个0.060.0702
      购物场所/个1.738.88017
      公交站点/个0.190.2503
      与最近巡逻驻点的距离/km0.370.1101.34
      平均房屋价格/百万元2.530.520.875.29
      道路长度/km0.700.5006.76
    • Table 2. Negative binomial regression model for different time intervals of street contact crime

      View table
      View in Article

      Table 2. Negative binomial regression model for different time intervals of street contact crime

      变量凌晨—清晨(00:00—06:59)白天(07:00—17:59)晚上(18:00—23:59)
      BIRRBIRRBIRR
      常数-2.05*0.13-1.020.36-0.850.42
      微信人口0.12***1.130.03***1.030.04***1.04
      餐饮点0.101.100.071.070.27***1.31
      网吧-0.150.860.221.25-0.340.70
      健身房-0.310.730.99*2.690.081.08
      KTV1.22**3.380.021.020.892.44
      休闲会所0.84*2.310.221.250.77*2.16
      购物场所0.021.020.031.03-0.010.99
      公交站点0.341.430.241.280.64***1.89
      与最近巡逻驻点的距离0.461.580.381.460.62*1.86
      平均房屋价格0.151.17-0.160.86-0.310.73
      道路长度0.111.110.071.070.001.00
      AIC612.18628.35578.95
    Tools

    Get Citation

    Copy Citation Text

    Lin LIU, Siyi LIANG, Guangwen SONG. Explaining Street Contact Crime based on Dynamic Spatio-Temporal Distribution of Potential Targets[J]. Journal of Geo-information Science, 2020, 22(4): 887

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Nov. 21, 2019

    Accepted: --

    Published Online: Nov. 12, 2020

    The Author Email: Lin LIU (lin.liu@uc.edu)

    DOI:10.12082/dqxxkx.2020.190709

    Topics