Acta Optica Sinica, Volume. 44, Issue 10, 1026031(2024)

1.1-1.5 μm Waveband High Power Random Vortex Beams Based on Acoustically-Induced Fiber Grating

Yang Li1, Tianfu Yao1,2,3、*, Chenchen Fan1, Xiulu Hao1, Xiaoya Ma1, Jiangming Xu1, Qingsong Zhang4, Xianglong Zeng4、**, and Pu Zhou1
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, Hunan , China
  • 2Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, Hunan , China
  • 3Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha 410073, Hunan , China
  • 4Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China
  • show less
    References(35)

    [1] Zhang J X, Lin Z Z, Liu J et al. SDM transmission of orbital angular momentum mode channels over a multi-ring-core fibre[J]. Nanophotonics, 11, 873-884(2022).

    [2] Shi Y, Blackman D R, Zhu P et al. Electron pulse train accelerated by a linearly polarized Laguerre-Gaussian laser beam[J]. High Power Laser Science and Engineering, 10, e45(2022).

    [3] Yang Y J, Ren Y X, Chen M Z et al. Optical trapping with structured light: a review[J]. Advanced Photonics, 3, 034001(2021).

    [4] Willig K I, Keller J, Bossi M et al. STED microscopy resolves nanoparticle assemblies[J]. New Journal of Physics, 8, 106(2006).

    [5] Yavorsky M, Vikulin D, Alexeyev C et al. Photon-phonon spin-orbit interaction in optical fibers[J]. Optica, 8, 638-641(2021).

    [6] Lü H R, Bai Y H, Ye Z W et al. Generation of optical vortex beams via metasurfaces (Invited)[J]. Infrared and Laser Engineering, 50, 20210283(2021).

    [7] Dai M C, Fan D H, Wang Y et al. Generation of high quality helical beams based on spatial light modulator[J]. Chinese Journal of Lasers, 43, 0905004(2016).

    [8] Fridman M, Nixon M, Dubinskii M et al. Fiber amplification of radially and azimuthally polarized laser light[J]. Optics Letters, 35, 1332-1334(2010).

    [9] Gregg P, Mirhosseini M, Rubano A et al. Q-plates as higher order polarization controllers for orbital angular momentum modes of fiber[J]. Optics Letters, 40, 1729-1732(2015).

    [10] Sun B, Wang A T, Xu L X et al. Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating[J]. Optics Letters, 37, 464-466(2012).

    [11] Zhao Y H, Wang T X, Mou C B et al. All-fiber vortex laser generated with few-mode long-period gratings[J]. IEEE Photonics Technology Letters, 30, 752-755(2018).

    [12] Zhao X Y, Liu Y Q, Liu Z Y et al. Wavelength tunable OAM mode converters based on chiral long-period gratings[J]. IEEE Photonics Technology Letters, 32, 1519-1522(2020).

    [13] Lu Y, Liu W G, Chen Z L et al. Spatial mode control based on photonic lanterns[J]. Optics Express, 29, 41788-41797(2021).

    [14] Wang T, Wang F, Shi F et al. Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler[J]. Journal of Lightwave Technology, 35, 2161-2166(2017).

    [15] Lu J F, Shi F, Meng L H et al. Real-time observation of vortex mode switching in a narrow-linewidth mode-locked fiber laser[J]. Photonics Research, 8, 1203-1212(2020).

    [16] Zhang W D, Huang L G, Wei K Y et al. High-order optical vortex generation in a few-mode fiber via cascaded acoustically driven vector mode conversion[J]. Optics Letters, 41, 5082-5085(2016).

    [17] Zhang W D, Wei K Y, Huang L G et al. Optical vortex generation with wavelength tunability based on an acoustically-induced fiber grating[J]. Optics Express, 24, 19278-19285(2016).

    [18] Li Y, Fan C C, Hao X L et al. High-power vortex Raman fiber laser[J]. Infrared and Laser Engineering, 52, 20230292(2023).

    [19] Liu J, Wang J. Research progress of vortex laser[J]. Chinese Journal of Lasers, 49, 1201001(2022).

    [20] Long J H, Jin K K, Chen Q et al. Generating the 1.5 kW mode-tunable fractional vortex beam by a coherent beam combining system[J]. Optics Letters, 48, 5021-5024(2023).

    [21] Hou T Y, Chang Q, Chang H X et al. Structuring orbital angular momentum beams by coherent laser array systems with tip-tilt optimization[J]. Results in Physics, 19, 103602(2020).

    [22] Hu H F, Chen Z, Cao Q et al. Wavelength-tunable and OAM-switchable ultrafast fiber laser enabled by intracavity polarization control[J]. IEEE Photonics Journal, 15, 1500704(2023).

    [23] Dong Z P, Sun H G, Zhang Y M et al. Visible-wavelength-tunable, vortex-beam fiber laser based on a long-period fiber grating[J]. IEEE Photonics Technology Letters, 33, 1173-1176(2021).

    [24] Gui L L, Wang C S, Ding F et al. 60 nm span wavelength-tunable vortex fiber laser with intracavity plasmon metasurfaces[J]. ACS Photonics, 10, 623-631(2023).

    [25] Zhou P, Yao T F, Fan C C et al. 50th anniversary of Raman fiber laser: history, progress and prospect (Invited)[J]. Infrared and Laser Engineering, 51, 20220015(2022).

    [26] Wu J D, Lai Z, Zhou Y et al. High energy singular beams generation from a dissipative soliton resonance Raman fiber laser[J]. Journal of Lightwave Technology, 41, 5091-5096(2023).

    [27] Turitsyn S K, Babin S A, El-Taher A E et al. Random distributed feedback fibre laser[J]. Nature Photonics, 4, 231-235(2010).

    [28] Ye J, Ma X Y, Zhang Y et al. Revealing the dynamics of intensity fluctuation transfer in a random Raman fiber laser[J]. Photonics Research, 10, 618-627(2022).

    [29] Ma X Y, Ye J, Zhang Y et al. Vortex random fiber laser with controllable orbital angular momentum mode[J]. Photonics Research, 9, 266-271(2021).

    [30] Luo K H, Ma R, Wu H et al. Flexible generation of broadly wavelength- and OAM-tunable Laguerre-Gaussian (LG) modes from a random fiber laser[J]. Optics Express, 31, 30639-30649(2023).

    [31] Blake J N, Kim B Y, Engan H E et al. Analysis of intermodal coupling in a two-mode fiber with periodic microbends[J]. Optics Letters, 12, 281-283(1987).

    [32] Vengsarkar A M, Pedrazzani J R, Judkins J B et al. Long-period fiber-grating-based gain equalizers[J]. Optics Letters, 21, 336-338(1996).

    [33] Yao T F, Chen Y Z, Zhang Y et al. All-fiberized cascaded random Raman fiber laser with high spectral purity based on filtering feedback[J]. Applied Optics, 58, 9728-9733(2019).

    [34] Zhang Y, Xu J M, Ye J et al. Cascaded telecom fiber enabled high-order random fiber laser beyond zero-dispersion wavelength[J]. Optics Letters, 45, 4180-4183(2020).

    [35] Lan B, Liu C, Rui D M et al. The topological charge measurement of the vortex beam based on dislocation self-reference interferometry[J]. Physica Scripta, 94, 055502(2019).

    Tools

    Get Citation

    Copy Citation Text

    Yang Li, Tianfu Yao, Chenchen Fan, Xiulu Hao, Xiaoya Ma, Jiangming Xu, Qingsong Zhang, Xianglong Zeng, Pu Zhou. 1.1-1.5 μm Waveband High Power Random Vortex Beams Based on Acoustically-Induced Fiber Grating[J]. Acta Optica Sinica, 2024, 44(10): 1026031

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Physical Optics

    Received: Jan. 2, 2024

    Accepted: Mar. 21, 2024

    Published Online: May. 6, 2024

    The Author Email: Yao Tianfu (yaotianfumary@163.com), Zeng Xianglong (zenglong@shu.edu.cn)

    DOI:10.3788/AOS240432

    CSTR:32393.14.AOS240432

    Topics