Acta Optica Sinica, Volume. 43, Issue 23, 2322001(2023)
Super-Resolution Wavelength-Controlled Zoom Metalens
[1] Ndao A, Hsu L, Ha J et al. Octave bandwidth photonic fishnet-achromatic-metalens[J]. Nature Communications, 11, 3205(2020).
[2] Arbabi E, Li J Q, Hutchins R J et al. Two-photon microscopy with a double-wavelength metasurface objective lens[J]. Nano Letters, 18, 4943-4948(2018).
[3] Wang S M, Wu P C, Su V C et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 13, 227-232(2018).
[4] Chen W T, Zhu A Y, Sanjeev V et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 13, 220-226(2018).
[5] He S C, Wei Z W, Ge R et al. AR display optical waveguide based on achromatic superstructure grating[J]. Laser & Optoelectronics Progress, 59, 2011016(2022).
[6] Shrestha S, Overvig A C, Lu M et al. Broadband achromatic dielectric metalenses[J]. Light: Science & Applications, 7, 85(2018).
[7] Chen W T, Zhu A Y, Sisler J et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures[J]. Nature Communications, 10, 355(2019).
[8] Chen W T, Zhu A Y, Sisler J et al. Broadband achromatic metasurface-refractive optics[J]. Nano Letters, 18, 7801-7808(2018).
[9] Avayu O, Almeida E, Prior Y et al. Composite functional metasurfaces for multispectral achromatic optics[J]. Nature Communications, 8, 14992(2017).
[10] Khorasaninejad M, Shi Z, Zhu A Y et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 17, 1819-1824(2017).
[11] Liang Y, Xu Y Y, Zou Y et al. Design of achromatic polarization-insensitive metalens[J]. Chinese Journal of Lasers, 48, 0303001(2021).
[12] Pahlevaninezhad H, Khorasaninejad M, Huang Y W et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo[J]. Nature Photonics, 12, 540-547(2018).
[13] Chen C, Song W G, Chen J W et al. Spectral tomographic imaging with aplanatic metalens[J]. Light: Science & Applications, 8, 99(2019).
[14] Remnev M A, Klimov V V. Metasurfaces: a new look at Maxwell’s equations and new ways to control light[J]. Physics-Uspekhi, 61, 157-190(2018).
[15] Ni Y B, Wen S, Shen Z C et al. Multidimensional light field sensing based on metasurfaces[J]. Chinese Journal of Lasers, 48, 1918003(2021).
[16] Li X, Ma X L, Luo X G. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electronic Engineering, 44, 255-275(2017).
[17] Genevet P, Capasso F, Aieta F et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces[J]. Optica, 4, 139-152(2017).
[18] Li Y, Li X, Chen L W et al. Orbital angular momentum multiplexing and demultiplexing by a single metasurface[J]. Advanced Optical Materials, 5, 1600502(2017).
[19] Chen S Q, Li Z C, Liu W W et al. Metasurfaces: from single-dimensional to multidimensional manipulation of optical waves with metasurfaces[J]. Advanced Materials, 31, 1970118(2019).
[20] Shaltout A M, Shalaev V M, Brongersma M L. Spatiotemporal light control with active metasurfaces[J]. Science, 364, eaat3100(2019).
[21] Pan M Y, Fu Y F, Zheng M J et al. Dielectric metalens for miniaturized imaging systems: progress and challenges[J]. Light: Science & Applications, 11, 195(2022).
[22] Luo Y, Chu C H, Vyas S et al. Varifocal metalens for optical sectioning fluorescence microscopy[J]. Nano Letters, 21, 5133-5142(2021).
[23] Fu R, Li Z L, Zheng G X et al. Reconfigurable step-zoom metalens without optical and mechanical compensations[J]. Optics Express, 27, 12221-12230(2019).
[24] Shalaginov M Y, An S S, Zhang Y F et al. Reconfigurable all-dielectric metalens with diffraction-limited performance[J]. Nature Communications, 12, 1225(2021).
[25] Hu Y Q, Ou X N, Zeng T B et al. Electrically tunable multifunctional polarization-dependent metasurfaces integrated with liquid crystals in the visible region[J]. Nano Letters, 21, 4554-4562(2021).
[26] Aieta F, Kats M A, Genevet P et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 347, 1342-1345(2015).
[27] Zhao F, Li Z P, Dai X M et al. Broadband achromatic sub-diffraction focusing by an amplitude-modulated terahertz metalens[J]. Advanced Optical Materials, 8, 2000842(2020).
[28] Reza N, Hazra L. Toraldo filters with concentric unequal annuli of fixed phase by evolutionary programming[J]. Journal of the Optical Society of America A, 30, 189-195(2013).
[29] Wu Z X, Dong F L, Zhang S et al. Broadband dielectric metalens for polarization manipulating and superoscillation focusing of visible light[J]. ACS Photonics, 7, 180-189(2020).
[30] Zhao F, Li Z P, Li S et al. Terahertz metalens of hyper-dispersion[J]. Photonics Research, 10, 886-895(2022).
[31] Goodman J W[M]. Introduction to Fourier optics(1996).
[32] Hasman E, Kleiner V, Biener G et al. Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics[J]. Applied Physics Letters, 82, 328-330(2003).
[33] Lin D M, Fan P Y, Hasman E et al. Dielectric gradient metasurface optical elements[J]. Science, 345, 298-302(2014).
[34] Zhou J X, Qian H L, Hu G W et al. Broadband photonic spin hall meta-lens[J]. ACS Nano, 12, 82-88(2018).
[35] Hsiao H H, Chen Y H, Lin R J et al. Integrated-resonant units: integrated resonant unit of metasurfaces for broadband efficiency and phase manipulation[J]. Advanced Optical Materials, 6, 1870047(2018).
Get Citation
Copy Citation Text
Baoze Huang, Fen Zhao, Qinxiao Liu, Junbo Yang. Super-Resolution Wavelength-Controlled Zoom Metalens[J]. Acta Optica Sinica, 2023, 43(23): 2322001
Category: Optical Design and Fabrication
Received: Jul. 26, 2023
Accepted: Aug. 30, 2023
Published Online: Dec. 8, 2023
The Author Email: Zhao Fen (ZhaoF@cqut.edu.cn), Yang Junbo (yangjunbo@nudt.edu.cn)