Infrared and Laser Engineering, Volume. 51, Issue 5, 20220302(2022)

Optical frequency comb in silicon nitride microresonator(Invited)

Jin Li1,2, Piyu Wang1,2, Zhengyu Wang1,2, Rui Niu1,2, Shuai Wan1,2、*, Guangcan Guo1,2, and Chunhua Dong1,2
Author Affiliations
  • 1Key Laboratory of Quantum Information, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026, China
  • 2Center For Excellence in Quantum Information and Quantum Physics, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026, China
  • show less
    References(42)

    [1] Vahala K J. Optical microcavities[J]. Nature, 424, 839-846(2003).

    [2] Chen H, Xiao Y. Applications of integrated microresonator-based optical frequency combs in precision measurement (Invited)[J]. Infrared and Laser Engineering, 50, 20210560(2021).

    [3] Dong C H, Wang Y D, Wang H L, et al. Optomechanical interfaces for hybrid quantum networks[J]. National Science Review, 2, 510-519(2015).

    [4] Vollmer F, Yang L. Review label-free detection with high-Q microcavities: A review of biosensing mechanisms for integrated devices[J]. Nanophotonics, 1, 267-291(2012).

    [5] He L, Ozdemir S K, Yang L. Whispering gallery microcavity lasers[J]. Laser and Photonics Reviews, 7, 60-82(2013).

    [6] Song Q H. Emerging opportunities for ultra-high Q whispering gallery mode microcavities[J]. Science China Physics, Mechanics & Astronomy, 62, 074231(2019).

    [7] Kippenberg T J, Holzwarth R, Diddams S A. Microresonatorbased optical frequency combs[J]. Science, 332, 555-559(2011).

    [8] Jin W, Yang Q F, Chang L, et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high Q microresonators[J]. Nature Photonics, 15, 346-353(2021).

    [9] Lu X, Moille G, Li Q, et al. Efficient telecom-to-visible spectral translation through ultralow power nonlinear nanophotonics[J]. Nature Photonics, 13, 593-601(2019).

    [10] Kippenberg T J, Vahala K J. Cavity optomechanics: Backaction at the mesoscale[J]. Science, 321, 1172(2008).

    [11] Wan S, Niu R, Ren H L, et al. Experimental demonstration of dissipative sensing in a self-interference microring resonator[J]. Photonics Research, 6, 681-685(2018).

    [12] Xue X X, Zheng X P, Zhou B K. Super-efficient temporal solitons in mutually coupled optical cavities[J]. Nature Photonics, 13, 616-622(2019).

    [13] Chen H J, Ji Q X, Wang H M, et al. Chaos-assisted two-octave-spanning microcombs[J]. Nature Communications, 11, 2336(2020).

    [14] Lu Z Z, Chen H J, Wang W Q, et al. Synthesized soliton crystals[J]. Nature Communications, 12, 3179(2021).

    [15] Weng H Z, Liu J, Afridi A A, et al. Directly accessing octave-spanning dissipative Kerr soliton frequency combs in an AlN microresonator[J]. Photonics Research, 9, 1351(2021).

    [16] Wang C L, Fang Z W, Yi A L, et al. High-Q microresonators on 4 H-silicon-carbide-on-insulator platform for nonlinear photonics[J]. Light: Science & Applications, 10, 1-11(2021).

    [17] Bai Y, Zhang M, Shi Q, et al. Brillouin-kerr soliton frequency combs in an optical microresonator[J]. Physical Review Letters, 126, 063901(2021).

    [18] Wang J, Lu Z, Wang W, et al. Long-distance ranging with high precision using a soliton microcomb[J]. Photonics Research, 8, 1964-1972(2020).

    [19] Wang W, Wang L, Zhang W. Advances in soliton microcomb generation[J]. Advanced Photonics, 2, 34001(2020).

    [20] Tan T, Yuan Z, Zhang H, et al. Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator[J]. Nature Communications, 12, 6716(2021).

    [21] Spencer D T, Drake T, Briles T C, et al. An optical-frequency synthesizer using integrated photonics[J]. Nature, 557, 81-85(2018).

    [22] Marin-Palomo P, Kemal J N, Karpov M, et al. Microresonator-based solitons for massively parallel coherent optical communications[J]. Nature, 546, 274-279(2017).

    [23] Newman Z L, Maurice V, Drake T, et al. Architecture for the photonic integration of an optical atomic clock[J]. Optica, 6, 680-685(2019).

    [24] Wang F X, Wang W, Niu R, et al. Quantum key distribution with on-chip dissipative kerr soliton[J]. Laser & Photonics Reviews, 14, 1900190(2020).

    [25] [25] Liu K, Jin N, Cheng H, et al. 720 million quality fact integrated allwaveguide photonic resonat [C]2021 Device Research Conference (DRC), 2021: 12.

    [26] Puckett M W, Liu K, Chauhan N, et al. 422 Million intrinsic quality factor planar integrated all-waveguide resonator with sub-MHz linewidth[J]. Nature Communications, 12, 934(2021).

    [27] Liu J, Huang G, Wang R N, et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits[J]. Nature Communications, 12, 2236(2021).

    [28] [28] Shaw M J, Guo J, Vawter G A, et al. Fabrication techniques f lowloss silicon nitride waveguides [C]Proc of SPIE, 2005, 5720: 109118.

    [29] Tang X, Bayot V, Reckinger N, et al. A simple method for measuring si-fin sidewall roughness by afm[J]. IEEE Transactions on Nanotechnology, 8, 611-616(2009).

    [30] Ji X, Barbosa F A S, Roberts S P, et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold[J]. Optica, 4, 619(2017).

    [31] Liu J, Raja A S, Karpov M, et al. Ultralowpower chip-based soliton microcombs for photonic integration[J]. Optica, 5, 1347(2018).

    [32] Wan S, Niu R, Wang Z Y, et al. Frequency stabilization and tuning of breathing solitons in Si3N4 microresonators[J]. Photonics Research, 8, 1342-1349(2020).

    [33] Wan S, Niu R, Peng J L, et al. Fabrication of the high-Q Si3 N4 microresonators for soliton microcombs[J]. Chinese Optics Letters, 20, 032201(2022).

    [34] Moille G, Westly D, Orji N G, et al. Tailoring broadband Kerr soliton microcombs via post-fabrication tuning of the geometric dispersion[J]. Applied Physics Letters, 119, 121103(2021).

    [35] Hu Y, Yu M, Zhu D, et al. On-chip electro-optic frequency shifters and beam splitters[J]. Nature, 599, 587-593(2021).

    [36] Dey R K, Cui B. Stitching error reduction in electron beam lithography with in-situ feedback using self-developing resist[J]. Journal of Vacuum Science & Technology B, 31, 06F409(2013).

    [37] Lu Z, Wang W, Zhang W, et al. Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator[J]. AIP Advances, 9, 025314(2019).

    [38] Niu R, Wan S, Wang Z Y, et al. Perfect soliton crystals in the high Q microrod resonator[J]. IEEE Photonics Technology Letters, 33, 788-791(2021).

    [39] Zhou H, Geng Y, Cui W, et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities[J]. Light: Science & Applications, 8, 1-10(2019).

    [40] Li J, Wan S, Peng J L, et al. Thermal tuning of mode crossing and the perfect soliton crystal in a Si3N4 microresonator[J]. Optics Express, 30, 13690(2022).

    [41] Ji X, Liu J, He J, et al. Compact, spatial-mode-interaction-free, ultralowloss, nonlinear photonic integrated circuits[J]. Communications Physics, 5, 1-9(2022).

    [42] Pfeiffer M H P, Liu J, Raja A S, et al. Ultra-smooth silicon nitride waveguides based on the damascene reflow process: fabrication and loss origins[J]. Optica, 5, 884(2018).

    Tools

    Get Citation

    Copy Citation Text

    Jin Li, Piyu Wang, Zhengyu Wang, Rui Niu, Shuai Wan, Guangcan Guo, Chunhua Dong. Optical frequency comb in silicon nitride microresonator(Invited)[J]. Infrared and Laser Engineering, 2022, 51(5): 20220302

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special issue—Microcavity optical frequency comb technology

    Received: Feb. 20, 2022

    Accepted: May. 13, 2022

    Published Online: Jun. 14, 2022

    The Author Email: Shuai Wan (wanshuai@ustc.edu.cn)

    DOI:10.3788/IRLA20220302

    Topics