Laser & Optoelectronics Progress, Volume. 59, Issue 22, 2210001(2022)
Fast and Automatic Fuzzy C-Means Clustering Color Image Segmentation Algorithm
Fig. 2. Comparison of different superpixel algorithms. (a) Original image; (b) LSC; (c) Mean shift; (d) WT; (e) MMGR-WT; (f) proposed algorithm
Fig. 3. Color space, histogram, and number of clusters of images. (a) Original images; (b) original image color space;(c) superpixel image color space; (d) original image histogram; (e) superpixel image histogram; (f) number of clusters
Fig. 4. Segmentation results of 5 algorithms on BSDS500 database. (a) Original images; (b) FCM; (c) SFFCM; (d) FCM_SICM;(e) AFCF; (f) proposed method
Fig. 5. Segmentation results of proposed algorithm on AID and MSRC databases. (a) Original images; (b) superpixel segmentation;(c) segmentation results of proposed algorithm
|
|
Get Citation
Copy Citation Text
Chao Wang, Yongshun Wang, Fan Di. Fast and Automatic Fuzzy C-Means Clustering Color Image Segmentation Algorithm[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2210001
Category: Image Processing
Received: Aug. 13, 2021
Accepted: Sep. 24, 2021
Published Online: Sep. 23, 2022
The Author Email: Chao Wang (18334704680@163.com)