Chinese Journal of Lasers, Volume. 52, Issue 8, 0802108(2025)
Multi‐Model Deep Network Laser Welding Molten Pool Detection
Fig. 7. Denoising results of different algorithms. (a) Original image; (b) SCUNet; (c) median filtering; (d) mean filtering; (e) Gaussian filtering
Fig. 8. Tracking results comparison of different algorithms. (a) MixFormer; (b) STARK; (c) SiamRPN++
Fig. 14. Segmentation results of different algorithms. (a)(d) Laser melting; (b) laser wire-filling welding; (c) laser molten pool under high-frequency vibration; (e) laser powder-feeding welding; (a1)‒(e1) segmentation result of DeepLabV3+ network; (a2)‒(e2) segmentation results of FCN network; (a3)‒(e3) segmentation results of PSPNet network; (a4)‒(e4) segmentation results of Mask2Former network; (a5)‒(e5) segmentation results of the proposed algorithm
|
|
|
|
|
|
Get Citation
Copy Citation Text
Junnian Gou, Yapeng Wang. Multi‐Model Deep Network Laser Welding Molten Pool Detection[J]. Chinese Journal of Lasers, 2025, 52(8): 0802108
Category: Laser Forming Manufacturing
Received: Jun. 17, 2024
Accepted: Aug. 14, 2024
Published Online: Mar. 17, 2025
The Author Email: Junnian Gou (junnian@mail.lzjtu.cn)
CSTR:32183.14.CJL240974