Chinese Journal of Lasers, Volume. 52, Issue 8, 0802108(2025)

Multi‐Model Deep Network Laser Welding Molten Pool Detection

Junnian Gou* and Yapeng Wang
Author Affiliations
  • School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu , China
  • show less
    Figures & Tables(20)
    Physical drawing of the welding equipment
    SCUNet network structure
    SC Block structure
    MixFormer network architecture
    Schematic diagram of Mask2Former structure
    Knowledge distillation schematic
    Denoising results of different algorithms. (a) Original image; (b) SCUNet; (c) median filtering; (d) mean filtering; (e) Gaussian filtering
    Tracking results comparison of different algorithms. (a) MixFormer; (b) STARK; (c) SiamRPN++
    Variation in evaluation indicators for the backbone network
    Variation in backbone network loss
    Variation in knowledge distillation evaluation indicator
    Change curves of segmented network evaluation indicator
    Ten experimental results of reasoning speed of split networks
    Segmentation results of different algorithms. (a)(d) Laser melting; (b) laser wire-filling welding; (c) laser molten pool under high-frequency vibration; (e) laser powder-feeding welding; (a1)‒(e1) segmentation result of DeepLabV3+ network; (a2)‒(e2) segmentation results of FCN network; (a3)‒(e3) segmentation results of PSPNet network; (a4)‒(e4) segmentation results of Mask2Former network; (a5)‒(e5) segmentation results of the proposed algorithm
    • Table 1. Performance evaluation of different denoising algorithms

      View table

      Table 1. Performance evaluation of different denoising algorithms

      AlgorithmPSNR /dBSSIM
      Median filtering31.570.90
      Mean filtering31.720.89
      Gaussian filtering33.930.95
      SCUNet37.870.95
    • Table 2. Molten pool tracking speed comparison

      View table

      Table 2. Molten pool tracking speed comparison

      MethodBackboneTime /ms
      STARKResNet50140.8
      SiamRPN++ResNet5084.3
      MixFormerConvolution vision Transformer137.0
    • Table 3. Backbone network performance evaluation in test sets

      View table

      Table 3. Backbone network performance evaluation in test sets

      BackboneParameters /106FLOPs /109RIOU /%MIOU /%A /%P /%
      EfficientNetV25.333.2695.0897.4197.4497.51
      RegNet4.772.1495.3697.5697.5797.68
      ShuffleNetV21.250.7995.3097.5297.6997.49
      MobileNetV30.930.3294.3597.0297.5496.65
    • Table 4. Experimental analysis of the effect of temperature τ on distillation

      View table

      Table 4. Experimental analysis of the effect of temperature τ on distillation

      τRIOU /%MIOU /%A /%P /%
      194.7097.297.3697.19
      594.7197.2197.3597.21
      1094.6997.297.2497.31
      1594.6397.1797.3197.17
      2094.6197.1697.3197.15
    • Table 5. Knowledge distillation performance evaluation

      View table

      Table 5. Knowledge distillation performance evaluation

      MethodRIOU /%MIOU/%A/%P/%Time /ms
      Teacher96.2698.0598.1398.09147.5
      Student94.3597.0297.5496.6586.4
      Ours94.7197.2197.3597.2184.7
    • Table 6. Performance evaluation of different segmented networks in test set

      View table

      Table 6. Performance evaluation of different segmented networks in test set

      MethodBackboneRIOU /%MIOU /%A /%P /%Time /ms
      FCN28ResNet5095.9697.8797.7398.15134.0
      PSPNet29ResNet5095.4597.6097.1598.19130.6
      DeepLabV3+30ResNet5095.9197.8597.8398.00147.1
      Mask2FormerResNet5096.1097.9598.0497.98106.8
      OursMobileNetV394.7197.2197.3597.2184.7
    Tools

    Get Citation

    Copy Citation Text

    Junnian Gou, Yapeng Wang. Multi‐Model Deep Network Laser Welding Molten Pool Detection[J]. Chinese Journal of Lasers, 2025, 52(8): 0802108

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Forming Manufacturing

    Received: Jun. 17, 2024

    Accepted: Aug. 14, 2024

    Published Online: Mar. 17, 2025

    The Author Email: Junnian Gou (junnian@mail.lzjtu.cn)

    DOI:10.3788/CJL240974

    CSTR:32183.14.CJL240974

    Topics