Journal of Optoelectronics · Laser, Volume. 36, Issue 2, 167(2025)
An image enhancement method for turbid water based on improved shallow-UWnet
[2] [2] ZHANG H, LI X C, YAO G P, et al. A pulse delay control method by external trigger to underwater illumination[J]. Journal of Nanoelectronics and Optoeletronics, 2022, 17(8):1185-1194.
[3] [3] FU C R, YUAN H, ZHANG H, et al. TMSO-Net: texture adaptive multi-scale observation for light field image depth estimation[J]. Journal of Visual Communication and Image Representation, 2023, 90:103731.
[4] [4] HU K, WENG C H, ZHANG Y W, et al. An overview of underwater vision enhancement: from traditional methods to recent deep learning[J]. Journal of Marine Science and Engineering, 2022, 10(2):241.
[5] [5] LI X J, HOU G J, TAN L, et al. A hybrid framework for underwater image enhancement[J]. IEEE Access, 2020, 8:197448-197462.
[6] [6] ZHUANG P X, LI C Y, WU J M. Bayesian retinex underwater image enhancement[J]. Engineering Applications of Artificial Intelligence, 2021, 101:104171.
[7] [7] MENG H Y, YAN Y J, CAI C T, et al. A hybrid algorithm for underwater image restoration based on color correction and image sharpening[J]. Multimedia Systems, 2020, 28:1975-1985.
[8] [8] LI J, SKINNER K A, EUSTICE R M, et al. WaterGAN: unsupervised generative network to enable real-time color correction of monocular underwater images[J]. IEEE Robotics and Automation Letters, 2017, 3(1):387-394.
[9] [9] WANG Y D, GUO J C, GAO H, et al. UIEC^2-Net: CNN-based underwater image enhancement using two color space[J]. Signal Processing: Image Communication, 2021, 96:116250.
[10] [10] NAIK A, SWARNAKAR A, MITTAL K. Shallow-UWnet: compressed model for underwater image enhancement (student abstract)[C]//AAAI Conference on Artificial Intelligence, February 2-9, 2021, held virtually. California: AAAI, 2021, 35(18):15853-15854.
[12] [12] NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines[C]//27th International Conference on Machine Learning (ICML-10), June 21-25, 2010, Haifa, Israel. New York: ACM, 2010:807-814.
[13] [13] ZHANG X H, ZOU Y X, SHI W. Dilated convolution neural network with LeakyReLU for environmental sound classification[C]//2017 22nd International Conference on Digital Signal Processing (DSP), August 23-25, 2017, London, UK. New York: IEEE, 2017:1-5.
[14] [14] JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-time style transfer and super-resolution[C]//Computer Vision-ECCV 2016:14th European Conference, October 11-14, 2016, Amsterdam, The Netherlands. Berlin, Heidelberg: Springer-Verlag, 2016:694-711.
[15] [15] PAN X, LI S, ZHANG X, et al. Underwater image enhancement algorithm based on wavelet transform and CLAHE[J]. Journal of Marine Science and Application, 2020, 19(2):234-241.
[16] [16] DUARTE A, CODEVILLA F, GAYA J D O, et al. A dataset to evaluate underwater image restoration methods[C]//OCEANS 2016-Shanghai, April 10-13, 2016, Shanghai, China. New York: IEEE, 2016:1-6.
[17] [17] ISLAM M J, XIA Y Y, SATTAR J. Fast underwater image enhancement for improved visual perception[J]. IEEE Robotics and Automation Letters, 2020, 5(2):3227-3234.
[18] [18] LI C Y, GUO C L, REN W Q, et al. An underwater image enhancement benchmark dataset and beyond[J]. IEEE Transactions on Image Processing, 2019, 29:4376-4389.
[19] [19] ISLAM M J, LUO P G, SATTAR J. Simultaneous enhancement and super-resolution of underwater imagery for improved visual perception[EB/OL]. (2020-02-04)[2023-07-10]. https://arxiv.org/abs/2002.01155.
[20] [20] DREWS P, NASCIMENTO E, MORASE F, et al. Transmission estimation in underwater single images[C]//IEEE International Conference on Computer Vision Workshops, December 1-8, 2013, Sydney, Australia. New York: IEEE, 2013:825-830.
[21] [21] SONG W, WANG Y, HUANG D M, et al. A rapid scene depth estimation model based on underwater light attenuation prior for underwater image restoration[C]//Advances in Multimedia Information Processing-PCM 2018:19th Pacific-Rim Conference on Multimedia, September 21-22, 2018, Hefei, China. Berlin, Heidelberg: Springer-Verlag, 2018:678-688.
[22] [22] JIANG J X, YE T, BAI J B, et al. Five A+ network: you only need 9K parameters for underwater image enhancement[EB/OL]. (2023-05-15)[2023-07-10]. https://arxiv.org/abs/2305.08824.
[23] [23] PANETTA K, GAO C, AGAIAN S. Human-visual-system-inspired underwater image quality measures[J]. IEEE Journal of Oceanic Engineering, 2015, 41(3):541-551.
Get Citation
Copy Citation Text
ZHANG Wenqi, ZHANG Hao, NIU Zhijie, BAI Shaozhou, TIAN Yanbing, JI Aiguo. An image enhancement method for turbid water based on improved shallow-UWnet[J]. Journal of Optoelectronics · Laser, 2025, 36(2): 167
Category:
Received: Jul. 10, 2023
Accepted: Jan. 23, 2025
Published Online: Jan. 23, 2025
The Author Email: JI Aiguo (jiaiguo@qut.edu.cn)