Journal of Optoelectronics · Laser, Volume. 36, Issue 6, 664(2025)

Dual-phase CT liver cancer detection algorithm based on deep learning

XIAO Hongyu1,2, YANG Weidong1,3, and WANG Qi4、*
Author Affiliations
  • 1School of Mechanical Engineering, Hebei University of Technology, Tianjin 300103, China
  • 2Army Aviation Institute, Beijing 101100
  • 3National Engineering Research Center for Technological Innovation Method and Tool, Hebei University of Technology, Tianjin 300401, China
  • 4Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
  • show less
    References(15)

    [3] [3] HUANG H, XIE Y, WANG G, et al. DLNLF-net: Denoised local and non-local deep features fusion network for malignancy characterization of hepatocellular carcinoma[J]. Computer Methods and Programs in Biomedicine, 2022, 227:107201.

    [4] [4] KIM J, MIN J H, KIM S K, et al. Detection of hepatocellular carcinoma in contrast-enhanced magnetic resonance imaging using deep learning classifier: a multi-center retrospective study[J]. Scientific Reports, 2020, 10(1):9458.

    [5] [5] NAVANEETHA M, VAIRAMUTHU S, PARTHASARATHY G, et al. Atom search-jaya-based deep recurrent neural network for liver cancer detection[J]. IET Image Processing, 2021, 15(2):337-349.

    [6] [6] DADOUN H, ROUSSEAU A L, DE KERVILER E, et al. Deep learning for the detection, localization, and characterization of focal liver lesions on abdominal US images[J]. Radiology: Artificial Intelligence, 2022, 4(3):e210110.

    [7] [7] XU C, ZHANG D, CHONG J, et al. Synthesis of gadolinium-enhanced liver tumors on nonenhanced liver MR images using pixel-level graph reinforcement learning[J]. Medical Image Analysis, 2021, 69(1):101976.

    [8] [8] STOLLMAYER R, BUDAI B K, TTH A, et al. Diagnosis of focal liver lesions with deep learning-based multi-channel analysis of hepatocyte-specific contrast-enhanced magnetic resonance imaging[J]. World Journal of Gastroenterology, 2021, 27(35):5978-5988.

    [9] [9] ZHAO J, LI D, KASSAM Z, et al. Tripartite-GAN: Synthesizing liver contrast-enhanced MRI to improve tumor detection[J]. Medical Image Analysis, 2020, 63(1):101667.

    [10] [10] CAO S E, ZHANG L Q, KUANG S C, et al. Multiphase convolutional dense network for the classification of focal liver lesions on dynamic contrast-enhanced computed tomography[J]. World Journal of Gastroenterology, 2020, 26(25):3660-3672.

    [11] [11] HUO Y K, CAI J Z, CHENG C T, et al. Harvesting, detecting, and characterizing liver lesions from large-scale multi-phase CT data via deep dynamic texture learning[EB/OL]. (2020-06-28)[2024-01-23]. https://arxiv.org/abs/2006.15691.

    [12] [12] CHENG C T, CAI J Z, TENG W, et al. A flexible three-dimensional hetero-phase computed tomography hepatocellular carcinoma (HCC) detection algorithm for generalizable and practical HCC screening[J]. Hepatology Communications, 2022, 6(10):2901-2913.

    [13] [13] XU Y, LIU J, LIN L, et al. M-DFNet: Multi-phase discriminative feature network for retrieval of focal liver lesions[C]//Proceedings of the 2021 International Conference on Multimedia Retrieval, June 9-14, 2021, Taipei, China. New York: ACM, 2021:667-673.

    [14] [14] HILL M, ROCH S. Inconsistency of triplet-based and quartet-based species tree estimation under intralocus recombination[J]. Journal of computational biology: A Journal of Computational Molecular Cell Biology, 2022, 29(11):232.

    [15] [15] ZHANG Z, ZHANG L, WANG P, et al. Robust watermarking algorithm based on Mahalanobis distance and ISS feature point for 3D point cloud data[J]. Earth Science Informatics, 2023, 17(1):783-796.

    [16] [16] QIU Z Y, MARTNEZ-SANCHEZ J, ARIAS-SNCHEZ P, et al. External multi-modal imaging sensor calibration for sensor fusion: A review[J]. Information Fusion, 2023, 97(1):101806.

    [17] [17] ZHANG K, LIANG J, VAN GOOL L, et al. Designing a practical degradation model for deep blind image super-resolution[C]//IEEE International Conference on Computer Vision, October 10-17, 2021, Montreal, QC, Canada. New York: IEEE, 2021:4791-4800.

    Tools

    Get Citation

    Copy Citation Text

    XIAO Hongyu, YANG Weidong, WANG Qi. Dual-phase CT liver cancer detection algorithm based on deep learning[J]. Journal of Optoelectronics · Laser, 2025, 36(6): 664

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 23, 2024

    Accepted: Jun. 24, 2025

    Published Online: Jun. 24, 2025

    The Author Email: WANG Qi (ja1109w@hebmu.edu.cn)

    DOI:10.16136/j.joel.2025.06.0053

    Topics