Journal of Infrared and Millimeter Waves, Volume. 44, Issue 1, 29(2025)

Dual-band narrowband thermal emitter designed based on multi-objective particle swarm optimization

Qian-li QIU1,2, Jin-guo ZHANG3, Dong-jie ZHOU1,2, Chong TAN1,2, Yan SUN1、*, Jia-ming HAO3、**, and Ning DAI1,4
Author Affiliations
  • 1State Key Laboratory of Infrared Physics,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • 2University of Chinese Academy of Sciences,Beijing 100049,China
  • 3Institute of Optoelectronics,Fudan University,Shanghai 200433,China
  • 4College of Physics and Optoelectronic Engineering,Hangzhou Institute for Advanced Study,University of Chinese Academy of Sciences,Hangzhou 310024,China
  • show less
    References(25)

    [1] Rinnerbauer V, Yeng Y X, Chan W R et al. High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals[J]. Optics Express, 21, 11482(2013).

    [2] Chan W R, Bermel P, Pilawa-Podgurski R C N et al. Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics[J]. Proceedings of the National Academy of Sciences, 110, 5309-5314(2013).

    [3] Chan D L C, Soljačić M, Joannopoulos J D. Thermal emission and design in 2D-periodic metallic photonic crystal slabs[J]. Optics Express, 14, 8785(2006).

    [4] Pralle M U, Moelders N, McNeal M P et al. Photonic crystal enhanced narrow-band infrared emitters[J]. Applied Physics Letters, 81, 4685-4687(2002).

    [5] Ikeda K, Miyazaki H T, Kasaya T et al. Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities[J]. Applied Physics Letters, 92, 021117(2008).

    [6] Miyazaki H T, Ikeda K, Kasaya T et al. Thermal emission of two-color polarized infrared waves from integrated plasmon cavities[J]. Applied Physics Letters, 92, 141114(2008).

    [7] Biener G, Dahan N, Niv A et al. Highly coherent thermal emission obtained by plasmonic bandgap structures[J]. Applied Physics Letters, 92, 081913(2008).

    [8] Liu X, Tyler T, Starr T et al. Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters[J]. Physical Review Letters, 107, 045901(2011).

    [9] Mason J A, Smith S, Wasserman D. Strong absorption and selective thermal emission from a midinfrared metamaterial[J]. Applied Physics Letters, 98, 241105(2011).

    [10] Molesky S, Dewalt C J, Jacob Z. High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics[J](2012).

    [11] Wang Z, Luk T S, Tan Y et al. Tunneling-enabled spectrally selective thermal emitter based on flat metallic films[J]. Applied Physics Letters, 106, 101104(2015).

    [12] Wang L P, Basu S, Zhang Z M. Direct Measurement of Thermal Emission From a Fabry–Perot Cavity Resonator[J]. Journal of Heat Transfer, 134, 072701(2012).

    [13] Liu X, Li Z, Wen Z et al. Large-area, lithography-free, narrow-band and highly directional thermal emitter[J]. Nanoscale, 11, 19742-19750(2019).

    [14] Wang Z, Clark J K, Ho Y L et al. Ultranarrow and Wavelength-Tunable Thermal Emission in a Hybrid Metal–Optical Tamm State Structure[J]. ACS Photonics, 7, 1569-1576(2020).

    [15] Wu H, Gao Y, Xu P et al. Plasmonic Nanolasers: Pursuing Extreme Lasing Conditions on Nanoscale[J]. Advanced Optical Materials, 7, 1900334(2019).

    [16] Symonds C, Lheureux G, Hugonin J P et al. Confined Tamm Plasmon Lasers[J]. Nano Letters, 13, 3179-3184(2013).

    [17] Ma R M, Oulton R F. Applications of nanolasers[J]. Nature Nanotechnology, 14, 12-22(2019).

    [18] Lochbaum A, Fedoryshyn Y, Dorodnyy A et al. On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing[J]. ACS Photonics, 4, 1371-1380(2017).

    [19] Vlk M, Datta A, Alberti S et al. Extraordinary evanescent field confinement waveguide sensor for mid-infrared trace gas spectroscopy[J]. Light: Science & Applications, 10, 26(2021).

    [20] Lochbaum A, Dorodnyy A, Koch U et al. Compact Mid-Infrared Gas Sensing Enabled by an All-Metamaterial Design[J]. Nano Letters, 20, 4169-4176(2020).

    [21] Zhang C, Wu K, Zhan Y et al. Planar microcavity-integrated hot-electron photodetector[J]. Nanoscale, 8, 10323-10329(2016).

    [22] He M, Nolen J R, Nordlander J et al. Deterministic inverse design of Tamm plasmon thermal emitters with multi-resonant control[J]. Nature Materials, 20, 1663-1669(2021).

    [23] Hassan A K S O, Etman A S, Soliman E A. Optimization of a Novel Nano Antenna With Two Radiation Modes Using Kriging Surrogate Models[J]. IEEE Photonics Journal, 10, 1-17(2018).

    [24] Nagar J, Campbell S D, Ren Q et al. Multiobjective Optimization-Aided Metamaterials-by-Design With Application to Highly Directive Nanodevices[J]. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2, 147-158(2017).

    [25] Wiecha P R, Arbouet A, Girard C et al. Evolutionary Multi-Objective Optimisation of Colour Pixels based on Dielectric Nano-Antennas[J]. Nature Nanotechnology, 12, 163-169(2017).

    Tools

    Get Citation

    Copy Citation Text

    Qian-li QIU, Jin-guo ZHANG, Dong-jie ZHOU, Chong TAN, Yan SUN, Jia-ming HAO, Ning DAI. Dual-band narrowband thermal emitter designed based on multi-objective particle swarm optimization[J]. Journal of Infrared and Millimeter Waves, 2025, 44(1): 29

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Infrared Physics, Materials and Devices

    Received: Apr. 16, 2024

    Accepted: --

    Published Online: Mar. 5, 2025

    The Author Email: Yan SUN (sunny@mail.sitp.ac.cn), Jia-ming HAO (jmhao@fudan.edu.cn)

    DOI:10.11972/j.issn.1001-9014.2025.01.005

    Topics