Journal of Infrared and Millimeter Waves, Volume. 44, Issue 1, 29(2025)
Dual-band narrowband thermal emitter designed based on multi-objective particle swarm optimization
[1] Rinnerbauer V, Yeng Y X, Chan W R et al. High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals[J]. Optics Express, 21, 11482(2013).
[2] Chan W R, Bermel P, Pilawa-Podgurski R C N et al. Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics[J]. Proceedings of the National Academy of Sciences, 110, 5309-5314(2013).
[3] Chan D L C, Soljačić M, Joannopoulos J D. Thermal emission and design in 2D-periodic metallic photonic crystal slabs[J]. Optics Express, 14, 8785(2006).
[4] Pralle M U, Moelders N, McNeal M P et al. Photonic crystal enhanced narrow-band infrared emitters[J]. Applied Physics Letters, 81, 4685-4687(2002).
[5] Ikeda K, Miyazaki H T, Kasaya T et al. Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities[J]. Applied Physics Letters, 92, 021117(2008).
[6] Miyazaki H T, Ikeda K, Kasaya T et al. Thermal emission of two-color polarized infrared waves from integrated plasmon cavities[J]. Applied Physics Letters, 92, 141114(2008).
[7] Biener G, Dahan N, Niv A et al. Highly coherent thermal emission obtained by plasmonic bandgap structures[J]. Applied Physics Letters, 92, 081913(2008).
[8] Liu X, Tyler T, Starr T et al. Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters[J]. Physical Review Letters, 107, 045901(2011).
[9] Mason J A, Smith S, Wasserman D. Strong absorption and selective thermal emission from a midinfrared metamaterial[J]. Applied Physics Letters, 98, 241105(2011).
[10] Molesky S, Dewalt C J, Jacob Z. High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics[J](2012).
[11] Wang Z, Luk T S, Tan Y et al. Tunneling-enabled spectrally selective thermal emitter based on flat metallic films[J]. Applied Physics Letters, 106, 101104(2015).
[12] Wang L P, Basu S, Zhang Z M. Direct Measurement of Thermal Emission From a Fabry–Perot Cavity Resonator[J]. Journal of Heat Transfer, 134, 072701(2012).
[13] Liu X, Li Z, Wen Z et al. Large-area, lithography-free, narrow-band and highly directional thermal emitter[J]. Nanoscale, 11, 19742-19750(2019).
[14] Wang Z, Clark J K, Ho Y L et al. Ultranarrow and Wavelength-Tunable Thermal Emission in a Hybrid Metal–Optical Tamm State Structure[J]. ACS Photonics, 7, 1569-1576(2020).
[15] Wu H, Gao Y, Xu P et al. Plasmonic Nanolasers: Pursuing Extreme Lasing Conditions on Nanoscale[J]. Advanced Optical Materials, 7, 1900334(2019).
[16] Symonds C, Lheureux G, Hugonin J P et al. Confined Tamm Plasmon Lasers[J]. Nano Letters, 13, 3179-3184(2013).
[17] Ma R M, Oulton R F. Applications of nanolasers[J]. Nature Nanotechnology, 14, 12-22(2019).
[18] Lochbaum A, Fedoryshyn Y, Dorodnyy A et al. On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing[J]. ACS Photonics, 4, 1371-1380(2017).
[19] Vlk M, Datta A, Alberti S et al. Extraordinary evanescent field confinement waveguide sensor for mid-infrared trace gas spectroscopy[J]. Light: Science & Applications, 10, 26(2021).
[20] Lochbaum A, Dorodnyy A, Koch U et al. Compact Mid-Infrared Gas Sensing Enabled by an All-Metamaterial Design[J]. Nano Letters, 20, 4169-4176(2020).
[21] Zhang C, Wu K, Zhan Y et al. Planar microcavity-integrated hot-electron photodetector[J]. Nanoscale, 8, 10323-10329(2016).
[22] He M, Nolen J R, Nordlander J et al. Deterministic inverse design of Tamm plasmon thermal emitters with multi-resonant control[J]. Nature Materials, 20, 1663-1669(2021).
[23] Hassan A K S O, Etman A S, Soliman E A. Optimization of a Novel Nano Antenna With Two Radiation Modes Using Kriging Surrogate Models[J]. IEEE Photonics Journal, 10, 1-17(2018).
[24] Nagar J, Campbell S D, Ren Q et al. Multiobjective Optimization-Aided Metamaterials-by-Design With Application to Highly Directive Nanodevices[J]. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2, 147-158(2017).
[25] Wiecha P R, Arbouet A, Girard C et al. Evolutionary Multi-Objective Optimisation of Colour Pixels based on Dielectric Nano-Antennas[J]. Nature Nanotechnology, 12, 163-169(2017).
Get Citation
Copy Citation Text
Qian-li QIU, Jin-guo ZHANG, Dong-jie ZHOU, Chong TAN, Yan SUN, Jia-ming HAO, Ning DAI. Dual-band narrowband thermal emitter designed based on multi-objective particle swarm optimization[J]. Journal of Infrared and Millimeter Waves, 2025, 44(1): 29
Category: Infrared Physics, Materials and Devices
Received: Apr. 16, 2024
Accepted: --
Published Online: Mar. 5, 2025
The Author Email: Yan SUN (sunny@mail.sitp.ac.cn), Jia-ming HAO (jmhao@fudan.edu.cn)