Laser & Optoelectronics Progress, Volume. 55, Issue 11, 111503(2018)

Abnormal Driving Behavior Detection Based on Covariance Manifold and LogitBoost

Cijun Li1,2,3,4,5、* and Yunpeng Liu1,2,4,5
Author Affiliations
  • 1 Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
  • 2 Institute for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
  • 3 University of Chinese Academy of Sciences, Beijing 100049, China
  • 4 Key Laboratory of Opto-Electronic Information Processing, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
  • 5 Key Laboratory of Image Understanding and Computer Vision, Liaoning Province, Shenyang, Liaoning 110016, China
  • show less
    References(21)

    [1] Miyaji M, Danno M, Oguri K. Analysis of driver behavior based on traffic incidents for driver monitor systems. [C]∥IEEE Intelligent Vehicles Symposium, 930-935(2008).

    [2] Bouttefroy P L, Beghdadi A, Bouzerdoum A et al. Markov random fields for abnormal behavior detection on highways. [C]∥European Workshop on Visual Information Processing, 149-154(2010).

    [3] Kimachi M, Kanayama K, Teramoto K. Incident prediction by fuzzy image sequence analysis. [C]∥Vehicle Navigation and Information Systems Conference, 51-56(1994).

    [4] Srivastava S, Delp E J. Standoff video analysis for the detection of security anomalies in vehicles. [C]∥IEEE Applied Imagery Pattern Recognition Workshop, 1-8(2010).

    [5] Srivastava S, Ng K K, Delp E J. Co-ordinate mapping and analysis of vehicle trajectory for anomaly detection. [C]∥IEEE International Conference on Multimedia and Expo, 1-6(2011).

    [6] Saruwatari K, Sakaue F, Sato J. Detection of abnormal driving using multiple view geometry in space-time. [C]∥IEEE Intelligent Vehicles Symposium, 1102-1107(2012).

    [7] Eren H, Makinist S, Akin E et al. Estimating driving behavior by a smartphone. [C]∥IEEE Intelligent Vehicles Symposium, 234-239(2012).

    [8] Mohamad I. Ali M A M, Ismail M. Abnormal driving detection using real time global positioning system data. [C]∥ Proceeding of the 2011 IEEE International Conference on Space Science and Communication (IconSpace), 1-6(2011).

    [10] Amin M S. Reaz M B I, Nasir S S. Integrated vehicle accident detection and location system[J]. TELKOMNIKA (Telecommunication Computing Electronics and Control), 12, 73-78(2014).

    [11] Zhu Z, Ji Q. Real time and non-intrusive driver fatigue monitoring. [C]∥7 th International IEEE Conference on Intelligent Transportation Systems , 657-662(2004).

    [15] Tuzel O, Porikli F, Meer P. Region covariance: a fast descriptor for detection and classification. [C]∥European Conference on Computer Vision, 589-600(2006).

    [16] Qin L, Snoussi H, Abdallah F. Adaptive covariance matrix for object region representation. [C]∥Fifth International Conference on Digital Image Processing (ICDIP 2013), 8878, 887848(2013).

    [17] Hu X S, Li S E, Yang Y L. Advanced machine learning approach for lithium-ion battery state estimation in electric vehicles[J]. IEEE Transactions on Transportation Electrification, 2, 140-149(2016).

    [18] Jayasumana S, Hartley R, Salzmann M et al. Kernel methods on the Riemannian manifold of symmetric positive definite matrices. [C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 73-80(2013).

    [21] Williams D, Liao X, Xue Y et al. Incomplete-data classification using logistic regression. [C]∥Proceedings of the 22nd International Conference on Machine learning, 972-979(2005).

    Tools

    Get Citation

    Copy Citation Text

    Cijun Li, Yunpeng Liu. Abnormal Driving Behavior Detection Based on Covariance Manifold and LogitBoost[J]. Laser & Optoelectronics Progress, 2018, 55(11): 111503

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Apr. 23, 2018

    Accepted: May. 29, 2018

    Published Online: Aug. 14, 2019

    The Author Email: Cijun Li (licijun@sia.cn)

    DOI:10.3788/LOP55.111503

    Topics