Optics and Precision Engineering, Volume. 31, Issue 23, 3457(2023)

Research progress in high-precision gear involute artifacts and measuring instruments

Siying LING1, Ming LING2、*, Hu LIN3, Fengtao WANG1, and Liding WANG2
Author Affiliations
  • 1Key Laboratory of Intelligent Manufacturing Technology of Ministry of Education, Shantou University, Shantou55063, China
  • 2Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian11603, China
  • 3National Institute of Metrology, Beijing100029, China
  • show less
    References(110)

    [1] [1] 科技部. “十三五”先进制造技术领域科技创新专项规划[EB/OL]. (2017-05-02)[2021-09-29]. http://www.gov.cn/xinwen/2017-05/02/content_5190479.htm. doi: 10.3969/j.issn.1672-3732.2016.03.008Ministry of Science and Technology. The 13th Five-Year Plan for Scientific and Technological Innovation Advanced Manufacturing Technology [EB/OL]. http://www.gov.cn/xinwen/2017-05/02/content_5190479.htm.(in Chinese). doi: 10.3969/j.issn.1672-3732.2016.03.008

    [2] [2] 国务院. 计量发展规划(2021-2035年)[EB/OL]. (2021-12-31)[2022-06-10]. http://www.gov.cn/zhengce/content/2022-01/28/content_5670947.html.CouncilState. Quantitative Development Planning (2021-2035)[EB/OL]. (2021-12-31)[2022-06-10]. http://www.gov.cn/zhengce/content/2022-01/28/content_5670947.html.(in Chinese)

    [3] [3] 全国齿轮标准化技术委员会. 圆柱齿轮 ISO齿面公差分级制 第1部分:齿面偏差的定义和允许值GB/T 10095.1-2022[S]. 北京: 中国标准出版社, 2022.National Gear Standardization Technical Committee. Cylindrical gears-ISO system of flank tolerance classification-Part1:Definitions and allowable values of deviations relevant to flanks of gear teeth-2022GB/T 10095.1[S]. Beijing: Standards Press of China, 2022. (in Chinese)

    [4] ISO[standard]. ISO(2013).

    [5] ISO[standard]. ISO(2003).

    [6] [standard](2005).

    [7] [7] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 齿轮渐开线样板: GB/T 6467—2010[S]. 北京: 中国标准出版社, 2011. doi: 10.3969/j.issn.1002-7203.2014.04.003General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. The involute artifact of gear: 6467-2010GB/T [S]. Beijing: Standards Press of China, 2011. (in Chinese). doi: 10.3969/j.issn.1002-7203.2014.04.003

    [8] [8] 中华人民共和国国家市场监督管理总局,中国计量科学研究院,德国联邦物理技术研究院. 中德计量合作40年纪念文集[M]. 北京: 中国标准出版社, 2019: 87.State Administration of Market Supervision and Administration of the People's Republic of China, National Institute of Metrology, China, BundesanstaltPhysikalisch-Technische. Collection of Commemorative Papers on the 40th Anniversary of Sino German Metrology Cooperation[M]. Beijing: Standards Press of China, 2019: 87. (in Chinese)

    [9] [9] 唐启昌. 自力更生建立渐开线国家标准[J]. 中国计量, 2008(9): 51-52. doi: 10.3969/j.issn.1006-9364.2008.09.029TANGQ CH. Self-reliant establishment of national standards for involute [J]. China Metrology, 2008(9): 51-52.(in Chinese). doi: 10.3969/j.issn.1006-9364.2008.09.029

    [10] [10] 唐启昌. 用渐开线样板作为渐开线仪器的标准[J]. 计量工作, 1977(1): 5-8.TANGQ CH. The involute artifact is used as the standard for involute instruments[J]. Metrology Science and Technology, 1977(1): 5-8. (in Chinese)

    [11] [11] 张泰昌. 渐开线样板的检定和使用[J]. 计量技术. 1986(12): 27-29.ZHANGT CH. Verification and use of involute artifact[J]. Metrology Science and Technology. 1986(12): 27-29. (in Chinese)

    [12] [12] 唐启昌. 长度计量检定测试技术讲座(五): 关于齿轮渐开线仪器的正确使用和量值统一(上)[J]. 中国计量, 1997(5):57-59. doi: 10.3901/jme.2012.05.124TANGQ CH. Technical lecture on length measurement verification test (V)-on the correct use of gear involute instrument and the unification of quantity value (I)[J]. China Metrology, 1997(5): 57-59. (in Chinese). doi: 10.3901/jme.2012.05.124

    [13] [13] 佟晓冬, 王立鼎, 王岩, 等. 渐开线实体基准的研制[J]. 计量技术, 1998(5): 33-36.TONGX D, WANGL D, WANGY, et al. Development of solid reference for involute [J]. Measurement Technique, 1998(5): 33-36.(in Chinese)

    [14] [14] 王立鼎,卢占山. 模数2基准标准齿轮的研制[J]. 光学机械, 1982(4): 28-34.WANGL D, LUZH SH. Development of modular 2 reference standard gear[J]. Optics and Precision Engineering,1982(4): 28-34. (in Chinese)

    [15] [15] 华恒. 机械工程专家学术成就介绍(46) 精密机械专家王立鼎[J]. 中国机械工程, 1998(6): 82.HUAH. Introduction to academic achievements of mechanical engineering experts (46) Wang Liding, an expert in precision machinery[J]. China Mechanical Engineering, 1998(6): 82. (in Chinese)

    [16] [16] 国家计量科学数据中心. 全国社会公用计量标准[EB/OL]. (2021-09-30)[2021-09-30]. https://msd.nmdc.ac.cn/openstd/web/index.php?r=openstd%2Flist&keyword=%E6%B8%90%E5%BC%80%E7%BA%BF.National Metrological Science Data Center. National Social Public Measurement Standards [EB/OL]. (2021-09-30)[2021-09-30]. https://msd.nmdc.ac.cn/openstd/web/index.php?r=openstd%2Flist&keyword=%E6%B8%90%E5%BC%80%E7%BA%BF.(in Chinese)

    [17] [17] 国家质量监督检验检疫总局. 齿轮测量中心校准规范: JJF 1561—2016[S]. 北京: 中国质检出版社, 2016. doi: 10.3969/j.issn.1002-7203.2014.04.003General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Calibration specification for gear measuring centers: 1561—2016JJF [S]. Beijing: Standards Pross of China, 2016. (in Chinese). doi: 10.3969/j.issn.1002-7203.2014.04.003

    [18] FRAZER R C, BICKER R et al. An international comparison of involute gear profile and helix measurement[J]. Metrologia, 41, 12-16(2004).

    [19] KNIEL K, CHANTHAWONG N, EASTMAN N et al. Supplementary comparison EURAMET.L-S24 on involute gear standards[J]. Metrologia, 51(2014).

    [20] METZ D, FERREIRA N, CHAILLOT J et al. Integration of a piezoresistive microprobe into a commercial gear measuring instrument[J]. Precision Engineering, 55, 349-360(2019).

    [21] TAKEOKA F, KOMORI M, KUBO A et al. Design of laser interferometric measuring device of involute profile[J]. Journal of Mechanical Design, 130, 1(2008).

    [22] TAKEOKA F, KOMORI M, KUBO A et al. High-precision measurement of an involute artefact by a rolling method and comparison between measuring instruments[J]. Measurement Science and Technology, 20(2009).

    [23] TAGUCHI T, MING A G, SHIMOJO M. Development of high precision gear measuring machine[J]. International Journal of Mechatronics and Automation, 1, 181(2011).

    [24] [24] 国家质量监督检验检疫总局. 齿轮渐开线样板检定规程: JJG 332—2003[S]. 北京: 中国计量出版社, 2004. doi: 10.3969/j.issn.1002-7203.2014.04.003General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Verification regulation of gear involute Masters: 332—2003JJG [S]. Beijing: China Metrology Publishing House, 2004. (in Chinese). doi: 10.3969/j.issn.1002-7203.2014.04.003

    [25] MAKAREVICH V. Final report on supplementary comparison COOMET.L-S10: Comparison of length standards for measuring gear parameters[J]. Metrologia, 49(2012).

    [26] KNIEL K, WEDMANN A, STEIN M et al. COOMET supplementary comparison L-S18 (project: 673/UA-a/15)[J]. Metrologia, 55(2018).

    [27] JANTZEN S, NEUGEBAUER M, MEEß R et al. Novel measurement standard for internal involute microgears with modules down to 0.1 mm[J]. Measurement Science and Technology, 29, 125012(2018).

    [28] [28] 国家质量监督检验检疫总局. 齿轮渐开线测量仪器校准规范: JJF 1124—2004[S]. 北京: 中国计量出版社, 2004.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Calibration specification for Gear involute Measuring instruments: 1124—2004JJF [S]. Beijing: China Metrology Publishing House, 2004. (in Chinese)

    [29] [29] 凌明, 凌四营, 刘祥生, 等. 虑及计值范围的1级齿轮渐开线样板精密成型[J]. 仪器仪表学报, 2021, 42(11): 35-44.LINGM, LINGS Y, LIUX SH, et al. Precision forming for class-1 gear involute artefact considering the evaluation range[J]. Chinese Journal of Scientific Instrument, 2021, 42(11): 35-44.(in Chinese)

    [30] [30] 凌四营, 凌明, 石照耀, 等. 1级齿轮渐开线样板的国内量值比对[J]. 光学 精密工程, 2022, 30(22): 2869-2875. doi: 10.37188/ope.20223000.0392LINGS Y, LINGM, SHIZH Y, et al. Measurement comparison for class-1 gear involute artifact in China[J]. Opt. Precision Eng., 2022, 30(22): 2869-2875.(in Chinese). doi: 10.37188/ope.20223000.0392

    [31] ZELENÝ V, LINKEOVÁ I, SÝKORA J et al. Mathematical approach to evaluate involute gear profile and helix deviations without using special gear software[J]. Mechanism and Machine Theory, 135, 150-164(2019).

    [32] [32] 凌四营. 超精密磨齿中的机床精化及磨齿工艺研究[D]. 大连: 大连理工大学, 2011.LINGS Y. Research on Machine Refinement and Processing for Ultra-precision Gear-grinding[D]. Dalian: Dalian University of Technology, 2011. (in Chinese)

    [33] [33] 凌四营, 王立鼎, 李克洪, 等. 基于1级精度基准标准齿轮的超精密磨齿工艺[J]. 光学 精密工程, 2011, 19(7):1596-1604. doi: 10.3788/OPE.20111907.1596LINGS Y, WANGL D, LIK H, et al. Ultra-precision gear-grinding processing based on class 1 master gear[J]. Opt. Precision Eng., 2011, 19(7):1596-1604.(in Chinese). doi: 10.3788/OPE.20111907.1596

    [34] WANG Q, PENG Y, WIEMANN A et al. Improved gear metrology based on the calibration and compensation of rotary table error motions[J]. CIRP Annals, 68, 511-514(2019).

    [35] WIEMANN A K, STEIN M, KNIEL K. Traceable metrology for large involute gears[J]. Precision Engineering, 55, 330-338(2019).

    [36] NI K, PENG Y, STÖBENER D et al. Cylindrical Gear Metrology[M]. Precision Manufacturing, 1-29(2019).

    [37] TAGUCHI T, KONDO Y. Evaluation of a high-precision gear measuring machine for helix measurement using helix and wedge artifacts[J]. Measurement Science and Technology, 27(2016).

    [38] KONDO Y, KONDO K, OSAWA S et al. Evaluation of instruments for helix measurement using wedge artifact[J]. Precision Engineering, 34, 667-674(2010).

    [39] KOMORI M, TAKEOKA F, KONDO K et al. Design method of double ball artifact for use in evaluating the accuracy of a gear-measuring instrument[J]. Journal of Mechanical Design, 132, 1(2010).

    [40] KOMORI M, TAKEOKA F, KONDO Y et al. High-precision concave spherical artifact for accuracy evaluation of a measuring instrument for an internal gear[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 10(2016).

    [41] KONDO Y, SASAJIMA K, NOGUCHI S et al. Tooth form evaluation using ball artifact development of a measuring instrument of a ball center distance traceable to national standard of length[J]. Key Engineering Materials, 381/382, 595-598(2008).

    [42] [42] 石照耀, 张健, 陈洪芳. 双球渐开线样板的理论分析和应用[J]. 光学 精密工程, 2011, 19(12): 2963-2969. doi: 10.3788/ope.20111912.2963SHIZH Y, ZHANGJ, CHENH F. Theoretical analysis of double-ball artifact and its applications[J]. Opt. Precision Eng., 2011, 19(12): 2963-2969.(in Chinese). doi: 10.3788/ope.20111912.2963

    [43] [43] 陈洪芳, 张健. 齿轮双球样板的设计方法[J]. 哈尔滨工程大学学报, 2012, 33(3): 361-365. doi: 10.3969/j.issn.1006-7043.201101056CHENH F, ZHANGJ. Design method of a double-ball artifact of gears[J]. Journal of Harbin Engineering University, 2012, 33(3): 361-365.(in Chinese). doi: 10.3969/j.issn.1006-7043.201101056

    [44] [44] 陈洪芳, 梁超伟, 李宝山, 等. 新型双轴式圆弧型大尺寸渐开线样板的工作原理[J]. 北京航空航天大学学报, 2022, 48(1): 1-7.CHENH F, LIANGCH W, LIB SH, et al. Working principle of novel double-axis arc-shaped large-size involute artifact[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 1-7.(in Chinese)

    [45] CHEN H, LIANG C, SHI Z et al. New design method for large involute artifacts[J]. Precision Engineering, 76, 190-198(2022).

    [46] LANZA G, VIERING B. A novel standard for the experimental estimation of the uncertainty of measurement for micro gear measurements[J]. CIRP Annals, 60, 543-546(2011).

    [47] WESS D B. Development of a novel lead master consisting of an offset sphere[J]. Precision Engineering, 22, 206-219(1998).

    [48] KNIEL K, FRANKE M, HÄRTIG F et al. Detecting 6 DoF geometrical errors of rotary tables[J]. Measurement, 153, 107366(2020).

    [49] GUENTHER A, STÖBENER D, GOCH G. Self-calibration method for a ball plate artefact on a CMM[J]. CIRP Annals, 65, 503-506(2016).

    [50] KOMORI M, TAKEOKA F, KITEN T et al. Calibration method for magnetically self-aligned multiball pitch artifact and accuracy upon reassembly[J]. Precision Engineering, 43, 187-199(2016).

    [51] KOMORI M, TAKEOKA F, KITEN T et al. Magnetically self-aligned multiball pitch artifact using geometrically simple features[J]. Precision Engineering, 40, 160-171(2015).

    [52] KONDO Y, OSAWA S, SATO O et al. Evaluation of instruments for pitch measurement using a sphere artifact[J]. Precision Engineering, 36, 604-611(2012).

    [53] WANG Q C, MILLER J, VON FREYBERG A et al. Error mapping of rotary tables in 4-axis measuring devices using a ball plate artifact[J]. CIRP Annals, 67, 559-562(2018).

    [54] GUENTHER A, KNIEL K, HÄRTIG F et al. Introduction of a new bevel gear measurement standard[J]. CIRP Annals, 62, 515-518(2013).

    [55] [55] 孔玉梅. 基准级渐开线激光测量仪的精度提升方法研究[D]. 大连: 大连理工大学, 2022.KONGY M. Research on Precision Improvement Method of Reference Involute Laser Measuring Instrument[D]. Dalian: Dalian University of Technology, 2022. (in Chinese)

    [56] [56] 娄志峰. 基准级渐开线测试理论与技术研究[D]. 大连: 大连理工大学, 2008.LOUZH F. Research on Theory and Technology of Benchmark Involute Test[D]. Dalian: Dalian University of Technology, 2008. (in Chinese)

    [57] RUDOLF O. History of gear measuring machines and traceability 1900-2006[J]. Gear Product News, 10, 20-25(2006).

    [58] LING S Y, LOU Z F, WANG L D et al. Optimal forming principle and grinding experiment of the ultra-precision involute profile[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 227, 375-382(2013).

    [59] [59] 高延新,张晓琳,李慧鹏. 齿轮精度与检测技术手册[M]. 北京: 机械工业出版社, 2014.GAOY X, ZHANGX L, LIH P. Technical Manual for Gear Accuracy and Inspection[M]. Beijing: China Machine Press, 2014. (in Chinese)

    [60] [60] 李小燕, 凌四营, 凌明, 等. 高精度齿轮螺旋线样板的测量方法与仪器[J]. 光学 精密工程, 2022, 30(17): 2100-2118. doi: 10.37188/ope.20223000.0051LIX Y, LINGS Y, LINGM, et al. Measuring methods and instruments of high precision gear helix artifact[J]. Optics and Precision Engineering, 2022, 30(17): 2100-2118.(in Chinese). doi: 10.37188/ope.20223000.0051

    [61] [61] 彭东林, 付敏, 陈锡侯, 等. 典型位移传感器分类研究与时栅传感器特点分析[J]. 机械工程学报, 2018, 54(10): 36-42. doi: 10.3901/jme.2018.10.036PENGD L, FUM, CHENX H, et al. Classification study on typical displacement sensors and analysis on the characteristics of time grating sensors[J]. Journal of Mechanical Engineering, 2018, 54(10): 36-42.(in Chinese). doi: 10.3901/jme.2018.10.036

    [62] [62] 李尕丽, 薛梓, 黄垚, 等. 全圆连续角度标准装置的系统误差分离与补偿[J]. 仪器仪表学报, 2021, 42(3): 1-9.LIG L, XUEZ, HUANGY, et al. System error separation and compensation of the continuous full circle angle standard device[J]. Chinese Journal of Scientific Instrument, 2021, 42(3): 1-9.(in Chinese)

    [63] HUANG Y, XUE Z, HUANG M et al. The NIM continuous full circle angle standard[J]. Measurement Science and Technology, 29(2018).

    [64] LIN H, XUE Z, YANG G L et al. Development of a high accurate gear measuring machine based on laser interferometry[C](2015).

    [65] [65] 林虎, 黄垚, 杨国梁, 等. 新一代齿轮螺旋线基准装置的研制[J]. 计量科学与技术, 2022(4): 67-73.LINH, HUANGY, YANGG L, et al. Development of the new generation national primary standard for gear helix calibration[J]. Metrology Science and Technology, 2022(4): 67-73.(in Chinese)

    [68] HÄRTIG F, STEIN M. 3D involute gear evaluation - Part I: Workpiece coordinates[J]. Measurement, 134, 569-573(2019).

    [69] STEIN M, HÄRTIG F. 3D involute gear evaluation - part II: deviations - basic algorithms for modern software validation[J]. Measurement Science and Technology, 33, 125003(2022).

    [70] WENDT K, FRANKE M, HÄRTIG F. Measuring large 3D structures using four portable tracking laser interferometers[J]. Measurement, 45, 2339-2345(2012).

    [71] HÄRTIG F, CHRISTIAN K, KARIN K et al. Improvement of measurement accuracy by combined evaluation of CMM and tracking interferometer measurements[C], 1172-1175(2003).

    [72] [72] 陈洪芳, 郑博文, 石照耀, 等. 基于激光追踪仪多站位测量的CMM空域坐标修正方法[J]. 中国激光, 2017, 44(3): 0304003. doi: 10.3788/cjl201744.0304003CHENH F, ZHENGB W, SHIZH Y, et al. CMM spatial coordinate correction method based on laser tracer multistation measurement[J]. Chinese Journal of Lasers, 2017, 44(3): 0304003.(in Chinese). doi: 10.3788/cjl201744.0304003

    [73] [73] 陈洪芳, 孙衍强, 王亚韦, 等. 高精度激光追踪测量方法及实验研究[J]. 中国激光, 2018, 45(1): 0104003. doi: 10.3788/cjl201845.0104003CHENH F, SUNY Q, WANGY W, et al. High-precision laser tracking measurement method and experimental study[J]. Chinese Journal of Lasers, 2018, 45(1): 0104003.(in Chinese). doi: 10.3788/cjl201845.0104003

    [74] LIN H, KELLER F, STEIN M. Influence and compensation of CMM geometric errors on 3D gear measurements[J]. Measurement, 151, 107110(2020).

    [75] [75] 李笑宇, 林虎, 薛梓, 等. 激光跟踪多边测量自标定优化方法[J]. 仪器仪表学报, 2021, 42(2): 10-17.LIX Y, LINH, XUEZH, et al. Self-calibration optimization method for laser tracking multilateral measurement[J]. Chinese Journal of Scientific Instrument, 2021, 42(2): 10-17.(in Chinese)

    [76] RAFELD E K, KOPPERT N, FRANKE M et al. Recent developments on an interferometric multilateration measurement system for large volume coordinate metrology[J]. Measurement Science and Technology, 33(2022).

    [79] HARTIG F, LIN H, KNIEL K et al. Laser tracker performance quantification for the measurement of involute profile and helix measurements[J]. Measurement, 46, 2837-2844(2013).

    [80] HÄRTIG F, LIN H, KNIEL K et al. Standard conforming involute gear metrology using an articulated arm coordinate measuring system[J]. Measurement Science and Technology, 23, 105011(2012).

    [81] [81] 陈洪芳,闫昊,石照耀. 面向特大型齿轮的激光跟踪多站位定位[J]. 光学 精密工程, 2014, 22(9): 2375-2380. doi: 10.3788/ope.20142209.2375CHENH F, YANH, SHIZH Y. Laser tracking multi-station positioning method for Mega-gear[J]. Opt. Precision Eng., 2014, 22(9): 2375-2380.(in Chinese). doi: 10.3788/ope.20142209.2375

    [82] [82] 郭天太, 孙培渊, 刘维, 等. 特大齿轮齿廓偏差测量方法的探究[J]. 工具技术, 2020, 54(6):64-67. doi: 10.3969/j.issn.1000-7008.2020.06.016GUOT T, SUNP Y, LIUW, et al. Research on measuring method of tooth deviation of extra large gears[J]. Tool Engineering, 2020, 54(6):64-67.(in Chinese). doi: 10.3969/j.issn.1000-7008.2020.06.016

    [83] [83] 徐星, 王建华. 激光跟踪仪建立齿轮测量坐标系的不确定度分析[J]. 工具技术, 2022, 56(11):157-160. doi: 10.3969/j.issn.1000-7008.2022.11.030XUX, WANGJ H. Uncertainty analysis of gear measuring coordinate system established by laser tracker[J]. Tool Engineering, 2022, 56(11):157-160.(in Chinese). doi: 10.3969/j.issn.1000-7008.2022.11.030

    [84] [84] 石照耀, 张白, 林家春, 等. 特大型齿轮激光跟踪在位测量原理及关键技术[J]. 光学 精密工程, 2013, 21(9): 2340-2347. doi: 10.3788/ope.20132109.2340SHIZH Y, ZHANGB, LINJ CH, et al. Principle and critical technology of in-site measurement system with laser tracker for mega gear[J]. Opt. Precision Eng., 2013, 21(9): 2340-2347.(in Chinese). doi: 10.3788/ope.20132109.2340

    [85] [85] 林虎, 薛梓, 杨国梁. 一种大齿轮多参量标准样板: CN211346733U[P]. 2020-08-25.LINH, XUEZ, YANGG L. Bull gear multi-parameter standard sample plate: CN211346733U[P]. 2020-08-25.(in Chinese)

    [86] [86] 凌四营, 石照耀, 宋洪侠, 等. 一种连轴装配式大齿轮渐开线样板: CN202111128774.9[P]. 2022-06-14.LINGS Y, SHIZH Y, SONGH X, et al. A large gear involute artifact assembled with mandrel: 202111128774.9[P]. 2022-06-14.(in Chinese)

    [87] DAI G L, NEUGEBAUER M, STEIN M et al. Overview of 3D micro- and nanocoordinate metrology at PTB[J]. Applied Sciences, 6, 257(2016).

    [88] FERREIRA N, KRAH T, JEONG D C et al. Integration of a silicon-based microprobe into a gear measuring instrument for accurate measurement of micro gears[J]. Measurement Science and Technology, 25(2014).

    [89] METZ D, JANTZEN S, WESSEL D et al. Integration of an isotropic microprobe and a microenvironment into a conventional CMM[J]. Measurement Science and Technology, 30, 115007(2019).

    [90] [90] 石照耀, 赵保亚, 于渤, 等. 齿轮特征线统一模型及在齿轮三维误差评定中的应用[J]. 机械工程学报, 2022, 58(24): 1-9. doi: 10.3901/jme.2022.24.001SHIZH Y, ZHAOB Y, YUB, et al. Unified model of gear characteristic line and its application in gear three-dimensional error evaluation[J]. Journal of Mechanical Engineering, 2022, 58(24): 1-9.(in Chinese). doi: 10.3901/jme.2022.24.001

    [91] [91] 石照耀, 赵保亚, 于渤, 等. 齿轮三维误差表征与分解[J]. 机械工程学报, 2022, 58(6): 1-9. doi: 10.3901/jme.2022.06.001SHIZH Y, ZHAOB Y, YUB, et al. Characterization and decomposition of three-dimensional error of gear[J]. Journal of Mechanical Engineering, 2022, 58(6): 1-9.(in Chinese). doi: 10.3901/jme.2022.06.001

    [92] SHI Z Y, SUN Y Q, WANG X Y et al. Acquisition and assessment of gear holistic deviations based on laser measurement[J]. Photonics, 9, 735(2022).

    [93] GUO X, SHI Z, YU B et al. 3D measurement of gears based on a line structured light sensor[J]. Precision Engineering, 61, 160-169(2020).

    [96] FUJIO H, KUBO A, SAITOH S et al. Laser holographic measurement of tooth flank form of cylindrical involute gear[J]. Journal of Mechanical Design, 116, 721-729(1994).

    [97] FANG S, WANG L, KOMORI M et al. Design of laser interferometric system for measurement of gear tooth flank[J]. Optik, 122, 1301-1304(2011).

    [98] YANG P, YANG S, XIAO Y et al. Calibration of geometric distortion based on a reference sheet in oblique laser interferometry[J]. Optik, 183, 47-54(2019).

    [99] GADELMAWLA E S. Computer vision algorithms for measurement and inspection of spur gears[J]. Measurement, 44, 1669-1678(2011).

    [100] [100] 石照耀, 方一鸣, 王笑一. 齿轮视觉检测仪器与技术研究进展[J]. 激光与光电子学进展, 2022, 59(14): 1415006.SHIZH Y, FANGY M, WANGX Y. Research progress in gear machine vision inspection instrument and technology[J]. Laser & Optoelectronics Progress, 2022, 59(14): 1415006.(in Chinese)

    [101] DONG L, CHEN W F, YANG S Y et al. A new machine vision-based intelligent detection method for gear grinding burn[J]. The International Journal of Advanced Manufacturing Technology, 125, 4663-4677(2023).

    [102] ALLAM A, MOUSSA M, TARRY C et al. Detecting teeth defects on automotive gears using deep learning[J]. Sensors, 21, 8480(2021).

    [103] [103] 王宁, 段振云, 赵文辉, 等. 齿轮齿廓总偏差视觉测量方法研究[J]. 机械传动, 2017, 41(11): 28-32.WANGN, DUANZH Y, ZHAOW H, et al. Research on visual measurement method of total deviation of gear tooth profile[J]. Journal of Mechanical Transmission, 2017, 41(11): 28-32.(in Chinese)

    [104] [104] 汤洁, 刘小兵, 李睿. 未知参数小模数齿轮齿距和齿廓偏差视觉测量[J]. 光学 精密工程, 2021, 29(1):100-109. doi: 10.37188/OPE.20212901.0100TANGJ, LIUX B, LIR. Vision measurement of pitch and profile deviations for small modulus gears with unknown parameters[J]. Opt. Precision Eng., 2021, 29(1): 100-109.(in Chinese). doi: 10.37188/OPE.20212901.0100

    [105] KOULIN G, ZHANG J, FRAZER R C et al. A new profile roughness measurement approach for involute helical gears[J]. Measurement Science and Technology, 28(2017).

    [106] [106] 林家春, 滕辰, 李晗晓, 等. 基于粗糙度轮廓仪的圆柱齿轮齿廓形状偏差测量[J]. 仪器仪表学报, 2020, 41(12): 15-22.LINJ CH, TENGCH, LIH X, et al. Tooth profile deviation measurement of cylindrical gears based on a roughness profilometer[J]. Chinese Journal of Scientific Instrument, 2020, 41(12): 15-22.(in Chinese)

    [107] [107] 石照耀, 于渤, 宋辉旭, 等. 20年来齿轮测量技术的发展[J]. 中国机械工程, 2022, 33(9): 1009-1024. doi: 10.3969/j.issn.1004-132X.2022.09.001SHIZH Y, YUB, SONGH X, et al. Development of gear measurement technology during last 20 years[J]. China Mechanical Engineering, 2022, 33(9): 1009-1024.(in Chinese). doi: 10.3969/j.issn.1004-132X.2022.09.001

    [108] ISO[standard]. ISO(2007).

    [109] [109] 凌明, 凌四营, 刘远航, 等. 测头半径对1级渐开线样板齿廓偏差测量的影响[J]. 仪器仪表学报, 2022, 43(4): 121-128.LINGM, LINGS Y, LIUY H, et al. Effect of probe radius on the measurement for profile deviations of class-1 gear involute artefact[J]. Chinese Journal of Scientific Instrument, 2022, 43(4): 121-128.(in Chinese)

    [110] LING M, LING S Y, LI X Y et al. Effect on the measurement for gear involute profile caused by the error of probe position[J]. Measurement Science and Technology, 33, 115013(2022).

    Tools

    Get Citation

    Copy Citation Text

    Siying LING, Ming LING, Hu LIN, Fengtao WANG, Liding WANG. Research progress in high-precision gear involute artifacts and measuring instruments[J]. Optics and Precision Engineering, 2023, 31(23): 3457

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 6, 2023

    Accepted: --

    Published Online: Jan. 5, 2024

    The Author Email: Ming LING (lingming@mail.dlut.edu.cn)

    DOI:10.37188/OPE.20233123.3457

    Topics