Opto-Electronic Engineering, Volume. 51, Issue 11, 240220-1(2024)

A solar cell defect detection model optimized and improved based on YOLOv8

Ziran Peng1,2、*, Siyuan Wang1,2, and Shenping Xiao1,2
Author Affiliations
  • 1School of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou, Hunan 412007, China
  • 2Hunan Key Laboratory of Electric Drive Control and Intelligent Equipment, Zhuzhou, Hunan 412007, China
  • show less
    References(24)

    [1] Peng Z R, Xu H S, Xiao S P. A CatBoost optimization-based fault diagnosis model for photovoltaic arrays[J]. Acta Electron Sin, 52, 2418-2428(2024).

    [2] Shi Y T, Dai F, Yang C M. Defect detection of solar photovoltaic cell[J]. J Electron Meas Instrum, 34, 157-164(2020).

    [3] Bedrich K, Bokalič M, Bliss M et al. Electroluminescence imaging of PV devices: advanced vignetting calibration[J]. IEEE J Photovoltaics, 8, 1297-1304(2018).

    [4] Chen X, Karin T, Jain A. Automated defect identification in electroluminescence images of solar modules[J]. Solar Energy, 242, 20-29(2022).

    [5] Peng Z R, Zhang Y Q, Xiao S P. Research on surface defect detection of solar cell with improved YOLOv5 algorithm[J]. Acta Energ Sol Sin, 45, 368-375(2024).

    [6] Ren S Q, He K M, Girshick R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans Pattern Anal Mach Intell, 39, 1137-1149(2017).

    [7] Pei S T, Zhang H Y, Hu C L et al. The defect detection method for cross-environment power transmission line based on ER-YOLO algorithm[J]. Trans China Electrotech Soc, 39, 2825-2840(2024).

    [8] Qian X L, Zhang H Q, Zhang H L et al. Solar cell surface defect detection based on visual saliency[J]. Chin J Sci Instrum, 38, 1570-1578(2017).

    [9] Tsai D M, Wu S C, Li W C. Defect detection of solar cells in electroluminescence images using Fourier image reconstruction[J]. Solar Energy Mater Solar Cells, 99, 250-262(2012).

    [10] Liu L, Wang C, Zhao S W et al. Research on solar cells defect detection technology based on machine vision[J]. J Electron Meas Instrum, 32, 47-52(2018).

    [12] Zhang W B, Ma Y H, Bai X J et al. Defect identification of solar panels using improved Faster R-CNN[J]. Power Syst Technol, 46, 2593-2600(2022).

    [13] Lu S, Wu K X, Chen J X. Solar cell surface defect detection based on optimized YOLOv5[J]. IEEE Access, 11, 71026-71036(2023).

    [14] Zhou Q C, Wang B C. Solar cell surface defect detection based on improved YOLOv7[J]. J Comput Appl, 43, 223-228(2023).

    [15] Fu H, Cheng G Q. Convolutional neural network based efficient detector for multicrystalline photovoltaic cells defect detection[J]. Energy Sources Part A Recovery Util Environ Eff, 45, 8686-8702(2023).

    [16] Zhang Y, Li B T, Shang J H et al. Defect detection of transmission line damper based on multi-scale convolutional attention mechanism[J]. Trans China Electrotech Soc, 39, 3522-3537(2024).

    [17] Wang Z, Hua Z X, Wen Y C et al. E-YOLO: recognition of estrus cow based on improved YOLOv8n model[J]. Expert Syst Appl, 238, 122212(2024).

    [19] Liu H J, Liu L S, Zhang M C. An improved infrared object detection algorithm based on YOLOv5[J]. Laser Technol, 48, 534-541(2024).

    [20] Zhang R M, Xiao Y F, Jia Z N et al. Improved YOLOv7 algorithm for target detection in complex environments from UAV perspective[J]. Opto-Electron Eng, 51, 240051(2024).

    [21] Wang P F, Li Y T, Huang Y Y et al. Defects detection for cable surface of cable-stayed bridge based on improved YOLOv5s network[J]. Opto-Electron Eng, 51, 240028(2024).

    [24] Wang C C, He W, Nie Y et al. Gold-YOLO: efficient object detector via gather-and-distribute mechanism[C], 36(2023).

    Tools

    Get Citation

    Copy Citation Text

    Ziran Peng, Siyuan Wang, Shenping Xiao. A solar cell defect detection model optimized and improved based on YOLOv8[J]. Opto-Electronic Engineering, 2024, 51(11): 240220-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Sep. 16, 2024

    Accepted: Nov. 4, 2024

    Published Online: Jan. 24, 2025

    The Author Email: Ziran Peng (彭自然)

    DOI:10.12086/oee.2024.240220

    Topics