Chinese Optics Letters, Volume. 20, Issue 9, 091603(2022)
Structural and optical properties evolution in pressure-induced amorphization of metal-organic framework ZIF-8
[1] Y. Q. Tian, C. X. Cai, X. M. Ren, C. Y. Duan, Y. Xu, S. Gao, X. Z. You. The silica-like extended polymorphism of cobalt(II) imidazolate three-dimensional frameworks: X-ray single-crystal structures and magnetic properties. Chemistry, 9, 5673(2003).
[2] P. I. Saragi, T. Spehr, A. Siebert, T. F. Lieker, J. Salbeck. Spiro compounds for organic optoelectronics. Chem. Rev., 107, 1011(2007).
[3] H. Kim, S. Yang, S. R. Rao, S. Narayanan, E. A. Kapustin, H. Furukawa, A. S. Umans, O. M. Yaghi, E. N. Wang. Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science, 356, 430(2017).
[4] C. Li, K. Wang, J. Z. Li, Q. C. Zhang. Recent progress in stimulus-responsive two-dimensional metal–organic frameworks. ACS Mater. Lett., 2, 779(2020).
[5] J. A. Mason, J. Oktawiec, M. K. Taylor, M. R. Hudson, J. Rodriguez, J. E. Bachman, M. I. Gonzalez, A. Cervellino, A. Guagliardi, C. M. Brown, P. L. Llewellyn, N. Masciocchi, J. R. Long. Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature, 527, 357(2015).
[6] M. S. Denny, J. C. Moreton, L. Benz, S. M. Cohen. Metal–organic frameworks for membrane-based separations. Nat. Rev. Mater., 1, 16078(2016).
[7] J. E. Mondloch, M. J. Katz, W. C. Isley, P. Ghosh, P. Liao, W. Bury, G. W. Wagner, M. G. Hall, J. B. DeCoste, G. W. Peterson, R. Q. Snurr, C. J. Cramer, J. T. Hupp, O. K. Farh. Destruction of chemical warfare agents using metal–organic frameworks. Nat. Mater., 14, 512(2015).
[8] H. J. Li, H. J. He, J. C. Yu, Y. J. Cui, Y. Yang, G. D. Qian. Dual-band simultaneous lasing in MOFs single crystals with Fabry–Perot microcavities. Sci China Chem., 62, 987(2019).
[9] Y. H. Wei, H. Y. Dong, C. Wei, W. Zhang, Y. L. Yan, Y. S. Zhao. Wavelength-tunable microlasers based on the encapsulation of organic dye in metal-organic frameworks. Adv. Mater., 28, 7424(2016).
[10] J. C. Yu, Y. J. Cui, C. D. Wu, Y. Yang, Z. Y. Wang, M. O. Keeffe, B. L. Chen, G. D. Qian. Second-order nonlinear optical activity induced by ordered dipolar chromophores confined in the pores of an anionic metal-organic framework. Angew. Chem. Int. Ed., 51, 10542(2012).
[11] S. Chen, S. Y. Yang, Y. Huang, W. Y. Jiao, G. H. Fan, Y. C. Gao. Wavelength-dependent nonlinear absorption of gold nanocages. Chin. Opt. Lett., 18, 011901(2020).
[12] M. M. Wang, M. K. Zhang, W. W. Song, L. Zhou, X. Y. Wang, Y. F. Tang. Heteroatom-doped amorphous cobalt–molybdenum oxides as a promising catalyst for robust hydrogen evolution. Inorg. Chem., 61, 5033(2022).
[13] A. C. Ghosh, A. Legrand, R. Rajapaksha, G. A. Craig, C. Sassoye, G. Balázs, D. Farrusseng, S. Furukawa, J. Canivet, F. M. Wisser. Rhodium-based metal–organic polyhedra assemblies for selective CO2 photoreduction. J. Am. Chem. Soc., 144, 3626(2022).
[14] H. Z. Wang, X. K. Pei, M. J. Kalmutzki, J. J. Yang, O. M. Yaghi. Large cages of zeolitic imidazolate frameworks. Acc. Chem. Res., 55, 707(2022).
[15] A. Qiao, T. D. Bennett, H. Z. Tao, A. Krajnc, G. Mali, C. M. Doherty, A. W. Thornton, J. C. Mauro, G. N. Greaves, Y. Z. Yue. A metal-organic framework with ultrahigh glass-forming ability. Sci. Adv., 4, 6827(2018).
[16] K. S. Park, Z. Ni, A. P. Côté, J. Y. Choi, R. D. Huang, F. J. Uribe-Romo, H. K. Chae, M. O. Keeffe, O. M. Yaghi. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. U.S.A., 103, 10186(2006).
[17] J. J. Ren, T. R. Li, X. P. Zhou, X. Dong, A. V. Shorokhov, M. B. Semenov, V. D. Krevchik, Y. H. Wang. Encapsulating all-inorganic perovskite quantum dots into mesoporous metal organic frameworks with significantly enhanced stability for optoelectronic applications. Chem. Eng. J., 358, 30(2019).
[18] G. N. Greaves, S. Sen. Inorganic glasses, glass-forming liquids and amorphizing solids. Adv. Phys., 56, 1(2007).
[19] T. D. Bennett, A. L. Goodwin, M. T. Dove, D. A. Keen, M. G. Tucker, E. R. Barney, A. K. Soper, E. G. Bithell, J. C. Tan, A. K. Cheetham. Structure and properties of an amorphous metal-organic framework. Phys. Rev. Lett., 104, 115503(2010).
[20] R. N. Widmer, G. I. Lampronti, S. Anzellini, R. Gaillac, S. Farsang, C. Zhou, A. M. Belenguer, C. W. Wilson, H. Palmer, A. K. Kleppe, M. T. Wharmby, X. Yu, S. M. Cohen, S. G. Telfer, S. A. T. Redfern, F.-X. Coudert, S. G. MacLeod, T. D. Bennett. Pressure promoted low-temperature melting of metal–organic frameworks. Nat. Mater., 18, 370(2019).
[21] A. S. Poryvaev, D. M. Polyukhov, M. V. Fedin. Mitigation of pressure-induced amorphization in metal-organic framework ZIF-8 upon EPR control. ACS Appl. Mater. Interfaces, 12, 16655(2020).
[22] M. Guo, H. B. He, K. Yi, S. Y. Shao, G. H. Hu, J. D. Shao. Optical characteristics of ultrathin amorphous Ge films. Chin. Opt. Lett., 18, 103101(2020).
[23] T. D. Bennett, A. K. Cheetham. Amorphous metal−organic frameworks. Acc. Chem. Res., 47, 1555(2014).
[24] D. F. Jimenez, R. Galvelis, A. Torrisi, A. D. Gellan, M. T. Wharmby, P. A. Wright, C. M. Draznieks, T. Düren. Flexibility and swing effect on the adsorption of energy-related gases on ZIF-8: combined experimental and simulation study. Dalton Trans., 41, 10752(2012).
[25] T. Tian, J. V. Garcia, T. D. Bennett, D. F. Jimenez. Mechanically and chemically robust ZIF-8 monoliths with high volumetric adsorption capacity. J. Mater. Chem. A, 3, 2999(2015).
[26] T. D. Bennett, S. Cao, J. C. Tan, D. A. Keen, E. G. Bithell, P. J. Beldon, T. Friscic, A. K. Cheetham. Facile mechanosynthesis of amorphous zeolitic imidazolate frameworks. J. Am. Chem. Soc., 133, 14546(2011).
[27] S. V. Cleuvenbergen, I. Stassen, E. Gobechiya, Y. X. Zhang, K. Markey, D. E. De Vos, C. Kirschhock, B. Champagne, T. Verbiest, M. A. Van Der Veen. ZIF-8 as nonlinear optical material: influence of structure and synthesis. Chem. Mater., 28, 3203(2016).
[28] Y. A. Mezenov, N. K. Kulachenkov, A. N. Yankin, S. S. Rzhevskiy, P. V. Alekseevskiy, V. D. Gilemkhanova, S. V. Bachinin, V. Dyachuk, V. A. Milichko. Polymer matrix incorporated with ZIF-8 for application in nonlinear optics. Nanomaterials, 10, 1036(2020).
[29] K. Driesen, V. K. Tikhomirov, C. Gorller-walrand. Eu3+ as probe for rare earth dopant site structure in nano-glass ceramics. J. Appl. Phys., 102, 024312(2007).
[30] X. M. Li, S. S. Zhou, R. F. Wei, X. Y. Liu, B. Q. Cao, H. Guo. Blue–green color-tunable emissions in novel transparent Sr2LuF7:Eu/Tb glass-ceramics for WLEDs. Chin. Opt. Lett., 18, 051601(2020).
[31] G. H. Jia, P. A. Tanner, C. K. Duan, J. Dexpert-Ghys. Eu3+ spectroscopy: a structural probe for yttrium orthoborate phosphors. J. Phys. Chem. C, 114, 2769(2010).
[32] D. V. Deyneko, I. V. Nikiforov, D. A. Spassky, Y. Y. Dikhtyar, S. M. Aksenov, S. Y. Stefanovich, B. I. Lazoryak. Luminescence of Eu3+ as a probe for the determination of the local site symmetry in β-Ca3(PO4)2-related structures. Cryst. Eng. Comm., 21, 5235(2019).
[1] Yixuan Wang, Yunfeng Yang, Xinyi Yang, Bo Zou.
[1] Yixuan Wang, Yunfeng Yang, Xinyi Yang, Bo Zou.
[1] Yixuan Wang, Yunfeng Yang, Xinyi Yang, Bo Zou.
[1] Yixuan Wang, Yunfeng Yang, Xinyi Yang, Bo Zou.
[1] Yixuan Wang, Yunfeng Yang, Xinyi Yang, Bo Zou.
[1] Yixuan Wang, Yunfeng Yang, Xinyi Yang, Bo Zou.
[1] Yixuan Wang, Yunfeng Yang, Xinyi Yang, Bo Zou.
[1] Yixuan Wang, Yunfeng Yang, Xinyi Yang, Bo Zou.
[1] Yixuan Wang, Yunfeng Yang, Xinyi Yang, Bo Zou.
[1] Yixuan Wang, Yunfeng Yang, Xinyi Yang, Bo Zou.
[1] Yixuan Wang, Yunfeng Yang, Xinyi Yang, Bo Zou.
Get Citation
Copy Citation Text
Xin Huang, Jin He, Yiguang Jiang, Zhuocheng Chen, Xing Duan, Long Zhang, "Structural and optical properties evolution in pressure-induced amorphization of metal-organic framework ZIF-8," Chin. Opt. Lett. 20, 091603 (2022)
Category: Optical Materials
Received: Apr. 16, 2022
Accepted: May. 17, 2022
Published Online: Jun. 16, 2022
The Author Email: Xing Duan (star1987@hdu.edu.cn), Long Zhang (lzhang@siom.ac.cn)