Chinese Journal of Liquid Crystals and Displays, Volume. 39, Issue 8, 1001(2024)

Remote sensing image land feature segmentation method based on lightweight DeepLabV3+

Jing MA1,2, Zhonghua GUO1,2、*, Zhiqiang MA1, Xiaoyan MA1,2, and Jialong LI1,2
Author Affiliations
  • 1School of Physics and Electronic-Electrical Engineering,Ningxia University,Yinchuan 750021,China
  • 2Ningxia Key Lab on Information Sensing & Intelligent Desert,Ningxia University,Yinchuan 750021,China
  • show less
    Figures & Tables(19)
    Structure diagram of DeepLabV3+ model
    Comparison chart of receptive fields with different expansion rates
    Deeply separable convolutional structure diagram
    Residual block structure of MobileNetV2
    Structure diagram of SE attention module
    Structure diagram of ECA attention module
    Improved ASPP structure diagram
    Structure diagram of improved DeepLabV3+ model
    Feature map visualization diagram of DeepLabV3+ model
    Comparison chart of DeepLabV3+ ablation experiments(Legend of CCF Dataset)
    Comparison chart of DeepLabV3+ ablation experiments(Legend of Huawei Ascend Cup Dataset)
    • Table 1. Dataset details

      View table
      View in Article

      Table 1. Dataset details

      数据集分辨率/m波段标注类别
      CCF20202RGB其他、耕地、林地、水域、建筑
      华为昇腾杯0.1~4RGB其他、水体、交通运输、建筑、植被、裸土
    • Table 2. MobileNetV2 network structure

      View table
      View in Article

      Table 2. MobileNetV2 network structure

      InputOperatortcns
      2 242×3conv2d-3212
      1 122×32bottleneck11611
      1 122×16bottleneck62422
      562×24bottleneck63232
      282×32bottleneck66442
      142×64bottleneck69631
      142×96bottleneck616032
      72×160bottleneck632011
      72×320conv2d 1×1-1 28011
      72×1 280avgpool 7×7--1-
      1×1×1 280conv2d 1×1-k-
    • Table 3. Training parameters

      View table
      View in Article

      Table 3. Training parameters

      KeysValues
      Epoch110
      Batch_size8
      Init_lr0.007
      Min_lr7e-5
      optimizer_typesgd
      momentum0.9
      lr_decay_typecos
    • Table 4. Comparison of the number of parameters of different models

      View table
      View in Article

      Table 4. Comparison of the number of parameters of different models

      方法参数量/个
      原始Xception54 709 445
      +MobileNetV25 814 037
      +损失函数5 874 037
      +SE5 854 997
      引入最大池化5 854 997
      +ECA5 855 000
    • Table 5. Experimental comparison of different attention modules on CCF dataset

      View table
      View in Article

      Table 5. Experimental comparison of different attention modules on CCF dataset

      方法IoU/%PA/%F1/%速率/(it·s-1
      其他耕地林地水域建筑mIoU其他耕地林地水域建筑mPA
      基线58.7683.4171.3982.3968.8972.9767.0595.2378.9187.0380.8881.8283.8726.74
      +CANet87.0883.4372.7783.1968.3173.0966.4994.5079.6290.1281.4382.4383.8925.88
      +CBAMNet59.7884.0471.7983.1167.5273.2570.4294.9479.6388.0975.0181.6284.0525.74
      +ECANet59.0884.1872.0182.8168.2573.2768.7795.3178.8788.1580.3582.2984.1226.45
      +SENet60.5783.7971.7683.3467.5173.3971.7494.5080.7086.9176.9182.4284.2127.75
    • Table 6. Comparison of ablation experiments of improvement algorithm for DeeplabV3+ model on CCF dataset

      View table
      View in Article

      Table 6. Comparison of ablation experiments of improvement algorithm for DeeplabV3+ model on CCF dataset

      方法IoU/%Precision/%F1/%速率/(it·s-1
      其他耕地林地水域建筑mIoU其他耕地林地水域建筑Acc
      原始Xception50.5382.3472.7981.6063.8870.2359.3091.1188.5391.4971.0786.3680.4313.42
      +MobileNetV259.0083.7771.5783.2566.7572.8776.3788.1388.5194.5079.6887.9383.7125.80
      +损失函数58.7683.4171.3982.3968.8972.9782.6187.0488.2293.9282.2987.8383.8726.74
      +SE60.5783.7971.7683.3467.5173.3979.5688.0886.6295.2984.8988.1084.1127.75
      引入最大池化60.6084.1572.0682.7867.4573.4182.6887.9888.2093.7879.1188.2684.2327.78
      +ECA58.6284.0071.6883.4369.5873.4778.3788.2587.6194.0283.2388.2884.2928.12
    • Table 7. Comparison of ablation experiment of improvement algorithm for DeeplabV3+ model on Huawei Ascend Cup dataset

      View table
      View in Article

      Table 7. Comparison of ablation experiment of improvement algorithm for DeeplabV3+ model on Huawei Ascend Cup dataset

      方法IoU/%Precision/%F1/%速率/(it·s-1
      其他水体交通运输建筑植被裸土mIoU其他水体交通运输建筑植被裸土Acc
      原始Xception37.7064.4677.0052.2723.9534.5348.3246.2680.2690.0065.3333.6346.1878.6463.582.99
      +MobilNetV264.0666.0982.5154.6332.9543.1657.2385.7182.5588.8971.1445.4661.4784.1171.565.67
      +损失函数66.4371.7384.1762.3743.5949.7763.0184.1784.3791.1272.6460.2063.7486.4876.468.20
      +SE68.0471.6784.1361.4841.0952.6863.1886.5684.6891.2170.6255.2866.1084.4476.628.02
      引入最大池化68.7171.3983.9462.6441.5850.8063.2885.8284.1490.7774.7057.4966.7186.4276.888.07
      +ECA69.2971.6384.0862.4042.7350.5163.4388.1184.8291.1073.8655.6463.3386.4777.048.05
    • Table 8. Experimental comparison of different model on CCF dataset

      View table
      View in Article

      Table 8. Experimental comparison of different model on CCF dataset

      方法

      骨干

      网络

      IoU/%Precision/%F1/%
      其他耕地林地水域建筑mIoU其他耕地林地水域建筑Accuracy
      UNetVGG1646.8180.9868.7981.2261.6467.8977.7583.7188.7995.3478.3285.7381.96
      PSPNetResNet5045.3180.4269.9578.1761.4167.0575.7284.7987.8588.9878.1485.2580.58
      MobileNetV254.8083.6472.5378.9265.5671.1171.3589.7889.6187.1873.5287.2382.67
      HRNetV244.0578.8565.6577.6961.9965.6585.2082.3387.2989.5272.0584.1679.72
      DL-Unet55.3682.2270.2281.4160.6769.9775.2886.4691.4392.2967.6786.6782.30
      DeepLabV3+Xception50.5382.3472.7981.6063.8870.2376.3788.1388.5194.5079.6887.9382.32
      MS-DeepLabV3+ResNet5056.0782.8271.2182.7365.0671.5874.3786.8890.9193.7275.8487.2483.20
      本文方法MobileNetV258.6284.0071.6883.4369.5873.4778.3788.2587.6194.0283.2388.0884.29
    Tools

    Get Citation

    Copy Citation Text

    Jing MA, Zhonghua GUO, Zhiqiang MA, Xiaoyan MA, Jialong LI. Remote sensing image land feature segmentation method based on lightweight DeepLabV3+[J]. Chinese Journal of Liquid Crystals and Displays, 2024, 39(8): 1001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Segmentation

    Received: Sep. 6, 2023

    Accepted: --

    Published Online: Sep. 27, 2024

    The Author Email: Zhonghua GUO (guozhh@nxu.edu.cn)

    DOI:10.37188/CJLCD.2023-0293

    Topics