Laser & Optoelectronics Progress, Volume. 62, Issue 16, 1622002(2025)

Weld Seam Feature Extraction Based on Improved U-Net Convolutional Neural Network

Leilei Xiong, Xuejun Zhu*, Huige Lai, Checao Yu, Kun Mao, Ming Yang, and Da Peng
Author Affiliations
  • School of Mechanical Engineering, Ningxia University, Yinchuan 750021, Ningxia , China
  • show less
    Figures & Tables(17)
    Data collection platform. (a) FV-160 weld seam tracking sensor; (b) data collection diagram
    Partial dataset
    Improved U-Net model structure
    Transfer learning training process
    U-Net model structure diagram with VGG16
    Structure diagram of GGCA mechanism
    GSConv structure diagram
    Upsampling network structure. (a) GS bottleneck; (b) VoVGSCSP; (c) improved VoVGSCSP
    Impact of transfer learning on model training loss
    Comparison of segmentation results using different algorithms
    Extraction result of laser stripe centerline
    Error results of laser stripe centerline extraction. (a) U-Net; (b) Deeplabv3+; (c) PSP-Net; (d) proposed
    • Table 1. Comparison of model performance under different weight coefficients of loss functions

      View table

      Table 1. Comparison of model performance under different weight coefficients of loss functions

      ωmPA /%mIoU /%
      095.6789.76
      0.295.7890.11
      0.495.8390.23
      0.695.7690.04
      0.895.6989.92
      1.095.5389.66
    • Table 2. Comparison of model performance under different group numbers

      View table

      Table 2. Comparison of model performance under different group numbers

      GmPA /%mIoU /%
      196.4891.89
      296.5692.09
      496.5191.92
    • Table 3. Comparison of ablation experiment results (segmentation accuracy)

      View table

      Table 3. Comparison of ablation experiment results (segmentation accuracy)

      ModelVGG16VoVGSCSPPretrainGGCAmIoU /%mPA /%ACC /%
      Baseline××××89.7695.6799.46
      1×××90.8095.9099.54
      2××90.9196.0799.55
      3×91.7896.4599.59
      492.0996.5699.61
    • Table 4. Comparison of ablation experiment results (model size)

      View table

      Table 4. Comparison of ablation experiment results (model size)

      ModelVGG16VoVGSCSPGGCAParams /106FLOPs /109FPS
      Baseline×××34.527131.04534.95
      1××24.891112.91839.21
      2×16.30668.69336.89
      316.35168.74135.21
    • Table 5. Comparison of evaluation indicators of the proposed algorithm and other algorithms

      View table

      Table 5. Comparison of evaluation indicators of the proposed algorithm and other algorithms

      AlgorithmACC /%mPA /%mIoU /%
      U-Net99.4695.6789.76
      Deeplabv3+99.5195.8690.19
      PSP-Net99.3494.9387.75
      Proposed99.6196.5692.09
    Tools

    Get Citation

    Copy Citation Text

    Leilei Xiong, Xuejun Zhu, Huige Lai, Checao Yu, Kun Mao, Ming Yang, Da Peng. Weld Seam Feature Extraction Based on Improved U-Net Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2025, 62(16): 1622002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Design and Fabrication

    Received: Feb. 18, 2025

    Accepted: Mar. 12, 2025

    Published Online: Aug. 6, 2025

    The Author Email: Xuejun Zhu (zhxj@nxu.edu.cn)

    DOI:10.3788/LOP250654

    CSTR:32186.14.LOP250654

    Topics