Optics and Precision Engineering, Volume. 33, Issue 8, 1303(2025)

Perception enhanced hybrid network for underwater object detection

Tingting YAO*, Ning LI, and Yu ZHANG
Author Affiliations
  • Information Science and Technology College, Dalian Maritime University, Dalian116026, China
  • show less
    References(25)

    [1] XU S B, ZHANG M H, SONG W et al. A systematic review and analysis of deep learning-based underwater object detection[J]. Neurocomputing, 527, 204-232(2023).

    [2] JIANG L, WANG Y, JIA Q et al. Underwater species detection using channel sharpening attention[C], 4259-4267(2021).

    [3] SHEN X, WANG H B, LI Y F et al. Criss-cross global interaction-based selective attention in YOLO for underwater object detection[J]. Multimedia Tools and Applications, 83, 20003-20032(2024).

    [4] CHEN L, XIE Y Z, LI Y X et al. CWSCNet: channel-weighted skip connection network for underwater object detection[J]. IEEE Transactions on Image Processing, 33, 5206-5218(2024).

    [5] YU H F, LI X B, FENG Y K et al. Multiple attentional path aggregation network for marine object detection[J]. Applied Intelligence, 53, 2434-2451(2023).

    [6] DAI L, LIU H, SONG P et al. Edge‐guided representation learning for underwater object detection[J]. CAAI Transactions on Intelligence Technology, 1078-1091(2024).

    [7] LIU J, LIU S, XU S J et al. Two-stage underwater object detection network using swin transformer[J]. IEEE Access, 10, 117235-117247(2022).

    [8] DAI L H, LIU H, SONG P H et al. A gated cross-domain collaborative network for underwater object detection[J]. Pattern Recognition, 149, 110222(2024).

    [10] LIANG X T, SONG P H. Excavating RoI attention for underwater object detection[C], 2651-2655(2022).

    [11] LIU Y, WANG S N. A quantitative detection algorithm based on improved faster R-CNN for marine benthos[J]. Ecological Informatics, 61, 101228(2021).

    [12] ZHANG J Y, WANG Y P, XU X C et al. YoloXT: a object detection algorithm for marine benthos[J]. Ecological Informatics, 72, 101923(2022).

    [13] WANG W H, XIE E Z, LI X et al. Pyramid vision transformer: a versatile backbone for dense prediction without convolutions[C], 548-558(2021).

    [14] LIN T Y, DOLLÁR P, GIRSHICK R et al. Feature pyramid networks for object detection[C], 936-944(2017).

    [15] GUO M H, LIU Z N, MU T J et al. Beyond self-attention: external attention using two linear layers for visual tasks[J]. IEEE Trans Pattern Anal Mach Intell, 45, 5436-5447(2023).

    [16] SONG P H, LI P T, DAI L H et al. Boosting R-CNN: Reweighting R-CNN samples by RPN's error for underwater object detection[J]. Neurocomputing, 530, 150-164(2023).

    [17] SHI D. TransNeXt: robust foveal visual perception for vision transformers[C], 17773-17783(2024).

    [18] LIN T Y, GOYAL P, GIRSHICK R et al. Focal loss for dense object detection[C], 2999-3007(2017).

    [21] ZOCCO F, LIN T C, HUANG C I et al. Towards more efficient EfficientDets and real-time marine debris detection[J]. IEEE Robotics and Automation Letters, 8, 2134-2141(2023).

    [22] REN S Q, HE K M, GIRSHICK R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    Tools

    Get Citation

    Copy Citation Text

    Tingting YAO, Ning LI, Yu ZHANG. Perception enhanced hybrid network for underwater object detection[J]. Optics and Precision Engineering, 2025, 33(8): 1303

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 24, 2024

    Accepted: --

    Published Online: Jul. 1, 2025

    The Author Email: Tingting YAO (ytt1030@dlmu.edu.cn)

    DOI:10.37188/OPE.20253308.1303

    Topics