Acta Laser Biology Sinica, Volume. 32, Issue 3, 247(2023)
Analysis of Structure Features and Epitopes of Chlamydia trachomatis Protease CPAF
[2] [2] WAGUIA KONTCHOU C, GENTLE I E, WEBER A, et al. Chla-mydia trachomatis inhibits apoptosis in infected cells by targeting the pro-apoptotic proteins Bax and Bak[J] . Cell Death and Dif-ferentiation, 2022, 29(10): 2046-2059.
[3] [3] MATSUO J, HAGA S, HASHIMOTO K, et al. Activation of caspase-3 during Chlamydia trachomatis-induced apoptosis at a late stage[J] . Canadian of Journal of Microbiology, 2019, 65(2): 135-143.
[5] [5] GUPTA K, HARRISON S A, DAVIS N A, et al. Prevalence of Chlamydia trachomatis infection in young women and associ-ated predictors[J] . Sexually Transmitted Diseases, 2021, 48(8): 529-535.
[6] [6] ZHONG G, FAN P, JI H, et al. Identification of a chlamydial protease-like activity factor responsible for the degradation of host transcription factors[J] . The Journal of Experimental Medicine, 2001, 193(8): 935-942.
[7] [7] PRUSTY B K, CHOWDHURY S R, GULVE N, et al. Peptidase inhibitor 15 (PI15) regulates chlamydial CPAF activity[J] . Fron-tiers in Cellular and Infection Microbiology, 2018, 8: 183.
[8] [8] RAJEEVE K, DAS S, PRUSTY B K, et al. Chlamydia trachoma-tis paralyses neutrophils to evade the host innate immune response[J] . Nature Microbiology, 2018, 3(7): 824-835.
[9] [9] ZHANG Y, ZHONG G, CAI H, et al. CPAF selectively degrades chlamydial T cell antigens for inhibiting antigen presentation[J] . Journal of Infection in Developing Countries, 2017, 11(11): 868-875.
[10] [10] CHEONG H C, LEE C Y Q, CHEOK YY, et al. CPAF, HSP60 and MOMP antigens elicit pro-inflammatory cytokines production in the peripheral blood mononuclear cells from genital Chlamydia trachomatis-infected patients[J] . Immunobiology, 2019, 224(1): 34-41.
[11] [11] PENG L, GAO J, HU Z, et al. A novel cleavage pattern of comple-ment C5 induced by Chlamydia trachomatis infection via the chlamydial protease CPAF[J] . Frontiers in Cellular and Infection Microbiology, 2022, 11: 732163.
[12] [12] DUDIAK B M, MAKSIMCHUK K R, BEDNAR M M, et al. Insights into the autoproteolytic processing and catalytic mecha-nism of the Chlamydia trachomatis virulence-associated protease CPAF[J] . Biochemistry, 2019, 58(33): 3527-3536.
[13] [13] DEL BALZO D, CAPMANY A, CEBRIAN I, et al. Chlamydia trachomatis infection impairs MHC-I intracellular trafficking and antigen cross-presentation by dendritic cells[J] . Frontiers in Im-munology, 2021, 12: 662096.
[14] [14] CHEN D, LEI L, LU C, et al. Secretion of the chlamydial viru-lence factor CPAF requires the sec-dependent pathway[J] . Micro-biology (Reading), 2010, 156(10): 3031-3040.
[15] [15] SNAVELY E A, KOKES M, DUNN J D, et al. Reassessing the role of the secreted protease CPAF in Chlamydia trachomatis infection through genetic approaches[J] . Pathogens and Disease, 2014, 71(3): 336-351.
[16] [16] SCHOTT B H, ANTONIA A L, WANG L, et al. Modeling of vari-ables in cellular infection reveals CXCL10 levels are regulated by human genetic variation and the Chlamydia-encoded CPAF prote-ase[J] . Science Reports, 2020, 10(1): 18269.
[17] [17] CHAVDA V P, PANDYA A, KYPREOS E, et al. Chlamydia trachomatis: quest for an eye-opening vaccine breakthrough[J] . Expert Review of Vaccines, 2022, 21(6): 771-781.
[18] [18] BORGES á H, FOLLMANN F, DIETRICH J. Chlamydia tra-chomatis vaccine development: a view on the current challenges and how to move forward[J] . Expert Review of Vaccines, 2022, 21(11): 1555-1567.
[19] [19] CHRISTENSEN D G, XIE X, BASISTY N, et al. Post-transla-tional protein acetylation: an elegant mechanism for bacteria to dynamically regulate metabolic functions[J] . Frontiers in Micro-biology, 2019, 10: 1604.
[20] [20] MAKSIMCHUK K R, ALSER K A, MOU R, et al. The Chla-mydia trachomatis protease CPAF contains a cryptic PDZ-like domain with similarity to human cell polarity and tight junction PDZ-containing proteins[J] . PLoS One, 2016, 11(2): e0147233.
[21] [21] RANTSI T, JOKI-KORPELA P, HOKYNAR K, et al. Serum anti-body response to Chlamydia trachomatis TroA and HtrA in wom-en with tubal factor infertility[J] . European Journal of Clinical Microbiology and Infectious Diseases, 2018, 37(8): 1499-1502.
[22] [22] AGBOWURO A A, HWANG J, PEEL E, et al. Structure-activity analysis of peptidic Chlamydia HtrA inhibitors[J] . Bioorganic and Medicinal Chemistry, 2019, 27(18): 4185-4199.
[23] [23] FAVARONI A, HEGEMANN J H. Chlamydia trachomatis poly-morphic membrane proteins (Pmps) form functional homomeric and heteromeric oligomers[J] . Frontiers in Microbiology, 2021, 12: 709724.
Get Citation
Copy Citation Text
WANG Dao, ZHANG Hongbo, LIU Wenbin, CHEN Jianlin. Analysis of Structure Features and Epitopes of Chlamydia trachomatis Protease CPAF[J]. Acta Laser Biology Sinica, 2023, 32(3): 247
Received: Mar. 11, 2023
Accepted: --
Published Online: Jan. 17, 2024
The Author Email: