Acta Laser Biology Sinica, Volume. 32, Issue 3, 247(2023)

Analysis of Structure Features and Epitopes of Chlamydia trachomatis Protease CPAF

WANG Dao1, ZHANG Hongbo2, LIU Wenbin3, and CHEN Jianlin1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(21)

    [2] [2] WAGUIA KONTCHOU C, GENTLE I E, WEBER A, et al. Chla-mydia trachomatis inhibits apoptosis in infected cells by targeting the pro-apoptotic proteins Bax and Bak[J] . Cell Death and Dif-ferentiation, 2022, 29(10): 2046-2059.

    [3] [3] MATSUO J, HAGA S, HASHIMOTO K, et al. Activation of caspase-3 during Chlamydia trachomatis-induced apoptosis at a late stage[J] . Canadian of Journal of Microbiology, 2019, 65(2): 135-143.

    [5] [5] GUPTA K, HARRISON S A, DAVIS N A, et al. Prevalence of Chlamydia trachomatis infection in young women and associ-ated predictors[J] . Sexually Transmitted Diseases, 2021, 48(8): 529-535.

    [6] [6] ZHONG G, FAN P, JI H, et al. Identification of a chlamydial protease-like activity factor responsible for the degradation of host transcription factors[J] . The Journal of Experimental Medicine, 2001, 193(8): 935-942.

    [7] [7] PRUSTY B K, CHOWDHURY S R, GULVE N, et al. Peptidase inhibitor 15 (PI15) regulates chlamydial CPAF activity[J] . Fron-tiers in Cellular and Infection Microbiology, 2018, 8: 183.

    [8] [8] RAJEEVE K, DAS S, PRUSTY B K, et al. Chlamydia trachoma-tis paralyses neutrophils to evade the host innate immune response[J] . Nature Microbiology, 2018, 3(7): 824-835.

    [9] [9] ZHANG Y, ZHONG G, CAI H, et al. CPAF selectively degrades chlamydial T cell antigens for inhibiting antigen presentation[J] . Journal of Infection in Developing Countries, 2017, 11(11): 868-875.

    [10] [10] CHEONG H C, LEE C Y Q, CHEOK YY, et al. CPAF, HSP60 and MOMP antigens elicit pro-inflammatory cytokines production in the peripheral blood mononuclear cells from genital Chlamydia trachomatis-infected patients[J] . Immunobiology, 2019, 224(1): 34-41.

    [11] [11] PENG L, GAO J, HU Z, et al. A novel cleavage pattern of comple-ment C5 induced by Chlamydia trachomatis infection via the chlamydial protease CPAF[J] . Frontiers in Cellular and Infection Microbiology, 2022, 11: 732163.

    [12] [12] DUDIAK B M, MAKSIMCHUK K R, BEDNAR M M, et al. Insights into the autoproteolytic processing and catalytic mecha-nism of the Chlamydia trachomatis virulence-associated protease CPAF[J] . Biochemistry, 2019, 58(33): 3527-3536.

    [13] [13] DEL BALZO D, CAPMANY A, CEBRIAN I, et al. Chlamydia trachomatis infection impairs MHC-I intracellular trafficking and antigen cross-presentation by dendritic cells[J] . Frontiers in Im-munology, 2021, 12: 662096.

    [14] [14] CHEN D, LEI L, LU C, et al. Secretion of the chlamydial viru-lence factor CPAF requires the sec-dependent pathway[J] . Micro-biology (Reading), 2010, 156(10): 3031-3040.

    [15] [15] SNAVELY E A, KOKES M, DUNN J D, et al. Reassessing the role of the secreted protease CPAF in Chlamydia trachomatis infection through genetic approaches[J] . Pathogens and Disease, 2014, 71(3): 336-351.

    [16] [16] SCHOTT B H, ANTONIA A L, WANG L, et al. Modeling of vari-ables in cellular infection reveals CXCL10 levels are regulated by human genetic variation and the Chlamydia-encoded CPAF prote-ase[J] . Science Reports, 2020, 10(1): 18269.

    [17] [17] CHAVDA V P, PANDYA A, KYPREOS E, et al. Chlamydia trachomatis: quest for an eye-opening vaccine breakthrough[J] . Expert Review of Vaccines, 2022, 21(6): 771-781.

    [18] [18] BORGES á H, FOLLMANN F, DIETRICH J. Chlamydia tra-chomatis vaccine development: a view on the current challenges and how to move forward[J] . Expert Review of Vaccines, 2022, 21(11): 1555-1567.

    [19] [19] CHRISTENSEN D G, XIE X, BASISTY N, et al. Post-transla-tional protein acetylation: an elegant mechanism for bacteria to dynamically regulate metabolic functions[J] . Frontiers in Micro-biology, 2019, 10: 1604.

    [20] [20] MAKSIMCHUK K R, ALSER K A, MOU R, et al. The Chla-mydia trachomatis protease CPAF contains a cryptic PDZ-like domain with similarity to human cell polarity and tight junction PDZ-containing proteins[J] . PLoS One, 2016, 11(2): e0147233.

    [21] [21] RANTSI T, JOKI-KORPELA P, HOKYNAR K, et al. Serum anti-body response to Chlamydia trachomatis TroA and HtrA in wom-en with tubal factor infertility[J] . European Journal of Clinical Microbiology and Infectious Diseases, 2018, 37(8): 1499-1502.

    [22] [22] AGBOWURO A A, HWANG J, PEEL E, et al. Structure-activity analysis of peptidic Chlamydia HtrA inhibitors[J] . Bioorganic and Medicinal Chemistry, 2019, 27(18): 4185-4199.

    [23] [23] FAVARONI A, HEGEMANN J H. Chlamydia trachomatis poly-morphic membrane proteins (Pmps) form functional homomeric and heteromeric oligomers[J] . Frontiers in Microbiology, 2021, 12: 709724.

    Tools

    Get Citation

    Copy Citation Text

    WANG Dao, ZHANG Hongbo, LIU Wenbin, CHEN Jianlin. Analysis of Structure Features and Epitopes of Chlamydia trachomatis Protease CPAF[J]. Acta Laser Biology Sinica, 2023, 32(3): 247

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Mar. 11, 2023

    Accepted: --

    Published Online: Jan. 17, 2024

    The Author Email:

    DOI:10.3969/j.issn.1007-7146.2023.03.008

    Topics