INFRARED, Volume. 44, Issue 7, 39(2023)

Retrieval of Atmospheric Three-Dimensional Wind Field Based onHyperspectral GIIRS Infrared Brightness Temperature

Gen WANG1, Song YUAN2, Song YE1, Feng XIE2, and Jiao CHEN2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(15)

    [1] [1] Kalnay E. Atmospheric modeling, data assimilation and predictability \[M\]. Cambridge: Cambridge University Press, 2003.

    [2] [2] Guillermo T S, Manel M R. Multi-layer wind velocity field visualization in infrared images of clouds for solar irradiance forecasting \[J\]. Applied Energy, 2021, 288(1): 116656.

    [4] [4] Velden C, Daniels J, Stettner D, et al. Recent innovations in deriving tropospheric winds from meteorological satellites \[J\]. Bulletin of the American Meteorological Society, 2005, 86(2): 205-224.

    [5] [5] Szantai A, Héas P, Mémin E. Comparison of atmospheric motion vectors and dense vector fields calculated from MSG images \[C\]. Beijing: 8th International Winds Workshop, 2006.

    [7] [7] McNally A P. A note on the occurrence of cloud in meteorologically sensitive areas and the implications for advanced infrared sounders \[J\]. Quarterly Journal of the Royal Meteorological Society, 2002, 128 (585): 2551-2556.

    [8] [8] Ma Z, Li J, Han W, et al. Four-dimensional wind fields from geostationary hyperspectral infrared sounder radiance measurements with high temporal resolution \[J\]. Geophysical Research Letters, 2021, 48(14): e2021GL093794.

    [9] [9] Yang J, Zhang Z, Wei C, et al. Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4 \[J\]. Bulletin of the American Meteorological Society, 2017, 98(8): 1637-1658.

    [10] [10] Ke G L, Meng Q, Finley T, et al. LightGBM: A highly efficient gradient boosting decision tree \[C\]. Long Beach: 31st Annual Conference on Neural Information Processing Systems, 2017.

    [14] [14] Altmann A, Tolosi L, Sander O, et al. Permutation importance: a corrected feature importance measure \[J\]. Bioinformatics, 2010, 26(10): 1340-1347.

    [15] [15] Yin R Y, Han W, Gao Z Q, et al. The evaluation of FY4A′s Geostationary Interferometric Infrared Sounder (GIIRS) longwave temperature sounding channels using the GRAPES global 4DVar \[J\]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(728): 1459-1476.

    [16] [16] Min M, Wu C Q, Li C, et al. Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series \[J\]. Journal of Meteorological Research, 2017, 31(4): 708-719.

    [17] [17] Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis \[J\]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999-2049.

    [18] [18] Zhang Q, Yu Y, Zhang W M, et al. Cloud Detection from FY-4A′s Geostationary Interferometric Infrared Sounder Using Machine Learning Approaches \[J\]. Remote Sensing, 2019, 11(24): 3035.

    Tools

    Get Citation

    Copy Citation Text

    WANG Gen, YUAN Song, YE Song, XIE Feng, CHEN Jiao. Retrieval of Atmospheric Three-Dimensional Wind Field Based onHyperspectral GIIRS Infrared Brightness Temperature[J]. INFRARED, 2023, 44(7): 39

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 3, 2023

    Accepted: --

    Published Online: Jan. 15, 2024

    The Author Email:

    DOI:10.3969/j.issn.1672-8785.2023.07.007

    Topics