Laser & Optoelectronics Progress, Volume. 58, Issue 5, 0527001(2021)

Enhancement of Quantum Teleportation Fidelity Based on Partial Memory Channel

Tianxiong Wu, Yunxia Li, Wen Meng, Junhui Wang, Jiahua Wei*, and Jie Tang
Author Affiliations
  • Information and Navigation College, Air Force Engineering University, Xi'an , Shaanxi 710000, China
  • show less
    References(29)

    [1] Bennett C H, Brassard G, Crépeau C et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters, 70, 1895-1899(1993).

    [2] Lu F. Controllable quantum entanglement based on cavity structure. Laser & Optoelectronics Progress, 56, 042701(2019).

    [3] Li W L, Li C F, Guo G C. Probabilistic teleportation and entanglement matching. Physical Review A, 61, 034301(2000).

    [4] Chen X B, Du J Z, Wen Q Y et al. Probabilistic teleportation of multi-particle partially entangled state. Chinese Physics B, 17, 771-777(2008).

    [5] Yan F L, Yan T. Probabilistic teleportation via a non-maximally entangled GHZ state. Chinese Science Bulletin, 55, 902-906(2010).

    [6] Zhou P, Li X H, Deng F G et al. Multiparty-controlled teleportation of an arbitrary m-qudit state with a pure entangled quantum channel. Journal of Physics A: Mathematical and Theoretical, 40, 13121-13130(2007).

    [7] Man Z X, Xia Y J, An N B. Genuine multiqubit entanglement and controlled teleportation. Physical Review A, 75, 052306(2007).

    [8] Han X P, Liu J M. Amplitude damping effects on controlled teleportation of a qubit by a tripartite W state. Physica Scripta, 78, 015001(2008).

    [9] Zha X W, Zou Z C, Qi J X et al. Bidirectional quantum controlled teleportation via five-qubit cluster state. International Journal of Theoretical Physics, 52, 1740-1744(2013).

    [10] Li Y H, Nie L P. Bidirectional controlled teleportation by using a five-qubit composite GHZ-Bell state. International Journal of Theoretical Physics, 52, 1630-1634(2013).

    [11] Bouwmeester D, Mattle K, Pan J W et al. Experimental quantum teleportation of arbitrary quantum states. Applied Physics B: Lasers and Optics, 67, 749-752(1998).

    [12] Ren J G, Xu P, Yong H L et al. Ground-to-satellite quantum teleportation. Nature, 549, 70-73(2017).

    [13] Oh S, Lee S, Lee H W. Fidelity of quantum teleportation through noisy channels. Physical Review A, 66, 022316(2002).

    [14] Qiu L, Tang G, Yang X Q et al. Enhancing teleportation fidelity by means of weak measurements or reversal. Annals of Physics, 350, 137-145(2014).

    [15] Xu X M, Cheng L Y, Liu A et al. Environment-assisted entanglement restoration and improvement of the fidelity for quantum teleportation. Quantum Information Processing, 14, 4147-4162(2015).

    [16] Macchiavello C, Palma G M. Entanglement-enhanced information transmission over a quantum channel with correlated noise. Physical Review A, 65, 050301(2002).

    [17] Karpov E, Daems D, Cerf N J. Entanglement-enhanced classical capacity of quantum communication channels with memory in arbitrary dimensions. Physical Review A, 74, 032320(2006).

    [18] Karimipour V, Memarzadeh L. Transition behavior in the capacity of correlated noisy channels in arbitrary dimensions. Physical Review A, 74, 032332(2006).

    [19] Zhang R, Liu W T, Wang J et al. Entanglement in quasi-periodic evolution of quantum walks. Laser & Optoelectronics Progress, 56, 182701(2019).

    [20] D'Arrigo A, Benenti G, Falci G. Quantum capacity of dephasing channels with memory. New Journal of Physics, 9, 310(2007).

    [21] D'Arrigo A, Benenti G, Falci G et al. Classical and quantum capacities of a fully correlated amplitude damping channel. Physical Review A, 88, 042337(2013).

    [22] Arshed N, Toor A H. Entanglement-assisted classical capacity of quantum channels with correlated noise. Physical Review A, 73, 014304(2006).

    [23] Benenti G, D'Arrigo A, Falci G. Enhancement of transmission rates in quantum memory channels with damping. Physical Review Letters, 103, 020502(2009).

    [24] Zhang Z H, Sun M. Enhanced deterministic joint remote state preparation under Pauli channels with memory. Physica Scripta, 95, 055107(2020).

    [25] Lin J. Preparing bell state by using dissipative process in directly coupled cavities. Laser & Optoelectronics Progress, 56, 242703(2019).

    [26] Zhai S Q, Yuan N, Li Q. Asymmetric bipartite EPR steering swapping characteristics of continuous variable. Acta Optica Sinica, 40, 0427001(2020).

    [27] Nielsen M, Chuang I. Quantum computation and quantum information(2000).

    [28] Leditzky F, Leung D, Smith G. Quantum and private capacities of low-noise channels. Physical Review Letters, 120, 160503(2018).

    Tools

    Get Citation

    Copy Citation Text

    Tianxiong Wu, Yunxia Li, Wen Meng, Junhui Wang, Jiahua Wei, Jie Tang. Enhancement of Quantum Teleportation Fidelity Based on Partial Memory Channel[J]. Laser & Optoelectronics Progress, 2021, 58(5): 0527001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Quantum Optics

    Received: Jun. 19, 2020

    Accepted: Aug. 11, 2020

    Published Online: Apr. 19, 2021

    The Author Email: Jiahua Wei (weijiahua@126.com)

    DOI:10.3788/LOP202158.0527001

    Topics