Acta Laser Biology Sinica, Volume. 28, Issue 3, 274(2019)

Screening and Agronomic Analysis of Mutants from Indica Maintainer Rice T98B Treated with γ-Ray Irradiation

TAN Yanning1,2, YANG Zhen3, and YUAN Dingyang1,2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(34)

    [1] [1] SHI Mingsong. The discovery and preliminary studies of the photoperiod-sensitive recessive male sterile rice (Oryza sativa L. subsp. japonica)[J]. Scientia Agricultura Sinica, 1985, 18(2): 44-48.

    [2] [2] DENG Huafeng, SHU Fubei, YUAN Dingyang. An overview of research and utilization of Annong S-1[J]. Hybrid Rice, 1999, 14(3): 1-3.

    [3] [3] AHLOOWALIA B S, MALUSZYNSKI M. Induced mutations-a new paradigm in plant breeding[J]. Euphytica, 2001, 118(2): 167-173.

    [4] [4] RUTGER J N. Applications of induced and spontaneous mutation in rice breeding and genetics[J]. Advances in Agronomy, 1983, 36: 383-413.

    [5] [5] DENG Dasheng, CHEN Hao, DENG Wenmin, et al. Development of a indica rice restorer line fuhui838 and its derivative lines with strong restoring ability and their utilization[J]. Journal of Nuclear Agricultural Sciences, 2009, 23(2): 175-179.

    [6] [6] YANG Rencui, ZHANG Shubiao, HUANG Ronghua, et al. Breeding technology of eui-hybrids of rice[J]. Scientia Agricultura Sinica, 2002, 35(3): 233-237.

    [7] [7] FUTSUHARA Y, TORIYAMA K, TSUNODA K. Breeding of a new rice variety “reimei” by gamma-ray irradiation[J]. Japanese Journal of Breeding, 2008, 17(2): 85-90.

    [8] [8] VOTHI M T, NGUYEN T H, PHAN Q M, et al. Applications of gamma rays irradiation and marker assisted selection for improving of bacterial leaf blight resistant rice variety, BT62.1[J]. Journal of Agricultural Technology, 2015, 11(8): 2441-2449.

    [9] [9] SONG J Y, KIM D S, LEE M C, et al. Physiological characterization of gamma-ray induced salt tolerant rice mutants[J]. Australian Journal of Crop Science, 2012, 6(3): 421-429.

    [10] [10] ELSHIRBEENY A, MITKEES R. The use of gamma irradiation for inducing high-protein rice[J]. Cereal Chemistry, 1989, 66(2): 79-80.

    [11] [11] SHU X L, XU J W, WANG Y, et al. Effects of gamma irradiation on starch digestibility of rice with different resistant starch content[J]. International Journal of Food Science & Technology, 2013, 48(1): 35- 43.

    [12] [12] DONG S K, LEE I S, JANG C S, et al. AEC resistant rice mutants induced by gamma-ray irradiation may include both elevated lysine production and increased activity of stress related enzymes[J]. Plant Science, 2004, 167(2): 305-316.

    [13] [13] HWANG J E, AHN J W, KWON S J, et al. Selection and molecular characterization of a high tocopherol accumulation rice mutant line induced by gamma irradiation[J]. Molecular Biology Reports, 2014, 41(11): 7671-7681.

    [14] [14] LUOA D, QIAN Q, YIN H F, et al. EUI1, encoding a putative cytochrome P450 monooxygenase, regulates the internodes elongation by modulating GA responses in rice[J]. Plant and Cell Physiology, 2006, 47(2): 181-191.

    [15] [15] ZHANG H, XU C X, HE Y, et al. Mutation in CSA creates a new photoperiod-sensitive genic male sterile line applicable for hybrid rice seed production[J]. Proceedings of the National Academy of Sciences, 2013, 110(1): 76-81.

    [16] [16] ZHU Bifeng, ZHU Youlin, WU Chenggang, et al. Identification of RAPD and SCAR markers linked to herbicide susceptible lethality gene (bel)in rice[J]. Acta Agronomica Sinica, 2006, 32(4): 618-624.

    [17] [17] DENG Xiaolin, YUAN Dingyang, XU Rongfa. A brief introduction of T98A, a high outcrossing and good grain quality CMS line[]. Hybrid Rice, 2001, 16(4): 14.

    [18] [18] TAN Yanning, SUN Xuewu, YUAN Dingyang, et al. Identification and fine mapping of green-revertible chlorina gene grc2 in rice (Oryza sativa L.)[J]. Acta Agronomica Sinica, 2015, 41(6): 831-837 .

    [19] [19] TAN Y N, SUN X W, FANG B H, et al. Conversion of a rice CMS maintainer into a photo- or thermo-sensitive genetic male sterile line[J]. Molecular Breeding, 2018, 38(5): 56.

    [20] [20] SASIKALA R, KALAIYARASI R. Sensitivity of rice varieties to gamma irradiation[J]. Electronic Journal of Plant Breeding, 2010, 1(4): 885-889.

    [21] [21] GUO Guangrong, YI Weiping, LIU Wuquan. Improving restorer line of hybrid rice by irradiation[J]. China Nuclear Science & Technology Report, 1995, (S2): 480-490.

    [22] [22] STOILOV L, GEORGIEVA M, MANOVA V, et al. Karyotype reconstruction modulates the sensitivity of barley genome to radiation-induced DNA and chromosomal damage[J]. Mutagenesis, 2013, 28(2): 153-160.

    [23] [23] HEFNER E, PREUSS S B, BRITT A B. Arabidopsis mutant sensitive to gamma radiation include the homologue of the human repair gene ERCC1[J]. Journal of Experimental Botany, 2003, 54(383): 669-680.

    [24] [24] PARK Y C, KIM J J, KIM D S, et al. Rice ring E3 ligase may negatively regulate gamma-ray response to mediate the degradation of photosynthesis-related proteins[J]. Planta, 2015, 241(5): 1119-1129.

    [25] [25] GUPTA A, CHRISTENSEN R G, RAYLA A L, et al. An optimized two-finger archive for ZFN-mediated gene targeting[J]. Nature Methods, 2012, 9(6): 588-590.

    [26] [26] LI T, LIU B, SPALDING M H, et al. High-efficiency TALEN-based gene editing produces disease-resistant rice[J]. Nature Biotechnology, 2012, 30(5): 390-392.

    [27] [27] ENDO M, MIKAMI M, TOKI S. Multi-gene knockout utilizing off-target mutations of the CRISPR/cas9 system in rice[J]. Plant & Cell Physiology, 2015, 56(1): 41-47.

    [28] [28] WU J L, WU C, LEI C, et al. Chemical- and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics[J]. Plant Molecular Biology, 2005, 59(1): 85-97.

    [29] [29] LI G, JAIN R, CHERN M, et al. The sequences of 1 504 mutants in the model rice variety kitaake facilitate rapid functional genomic studies[J]. Plant Cell, 2017, 29(6): 1218-1231.

    [30] [30] DU H L, YU Y, MA Y F, et al. Sequencing and de novo assembly of a near complete indica rice genome[J]. Nature Communications, 2017, 8: 15324.

    [31] [31] YANG Chunyan, JIANG Ling, SHEN Beibei, et al. Identification of mutants from radiated ‘Nanjing 35’ in rice[J]. Journal of Nanjing Agricultural University, 2012, 35(3): 1-6.

    [32] [32] SPIELMEYER W, ELLIS M H, CHANDLER P M. Semidwarf (sd-1), “reen revolution”ice, contains a defective gibberellin 20-oxidase gene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(13): 9043-9048.

    [33] [33] CHEN Q L, XIE Q J, GAO J, et al. Characterization of rolled and erect leaf 1 in regulating leave morphology in rice[J]. Journal of Experimental Botany, 2015, 66(19): 6047-6058.

    [34] [34] SAKAMOTO T, KITANO H, FUJIOKA S. An E3 ubiquitin ligase, erect leaf 1, functions in brassinosteroid signaling of rice[J]. Plant Signaling & Behavior, 2013, 8(11): e27117.

    Tools

    Get Citation

    Copy Citation Text

    TAN Yanning, YANG Zhen, YUAN Dingyang. Screening and Agronomic Analysis of Mutants from Indica Maintainer Rice T98B Treated with γ-Ray Irradiation[J]. Acta Laser Biology Sinica, 2019, 28(3): 274

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 25, 2019

    Accepted: --

    Published Online: Aug. 7, 2019

    The Author Email: Dingyang YUAN (yuandingyang@hhrrc.ac.cn)

    DOI:10.3969/j.issn.1007-7146.2019.03.011

    Topics