Journal of Inorganic Materials, Volume. 40, Issue 6, 639(2025)
[1] SEBASTIAN M T, UBIC R, JANTUNEN H. Low-loss dielectric ceramic materials and their properties[J]. International Materials Reviews, 60, 392(2015).
[2] PENG S, ZHANG Y, YI T. Research progress of Ba(Zn1/3Nb2/3)O3 microwave dielectric ceramics: a review[J]. Materials, 16, 423(2023).
[3] SEBASTIAN M T, WANG H, JANTUNEN H. Low temperature co-fired ceramics with ultra-low sintering temperature: a review[J]. Current Opinion in Solid State & Materials Science, 20, 151(2016).
[4] SEBASTIAN M T, JANTUNEN H. Low loss dielectric materials for LTCC applications: a review[J]. International Materials Reviews, 53, 57(2008).
[5] YANG H, ZHANG S, YANG H et al. Usage of P-V-L bond theory in studying the structural/property regulation of microwave dielectric ceramics: a review[J]. Inorganic Chemistry Frontiers, 7:, 4711(2020).
[6] SHEHBAZ M, DU C, ZHOU D et al. Recent progress in dielectric resonator antenna: materials, designs, fabrications, and their performance[J]. Applied Physics Reviews, 10:, 021303(2023).
[7] HILL M D, CRUICKSHANK D B, MACFARLANE I A. Perspective on ceramic materials for 5G wireless communication systems[J]. Applied Physics Letters, 118:, 120501(2021).
[8] REANEY I M, IDDLES D. Microwave dielectric ceramics for resonators and filters in mobile phone networks[J]. Journal of the American Ceramic Society, 89, 2063(2006).
[9] WANG X, ZHOU T, WANG W et al. Effect of B-site complex substitutions on orthorhombic distortion and microwave dielectric properties of Ca(Zr0.95Ti0.05)O3 perovskites[J]. Journal of Materials Chemistry C, 12:, 3124(2024).
[11] KAWASHIMA S, NISHIDA M, UEDA I et al. Ba(Zn1/3Ta2/3)O3 ceramics with low dielectric loss at microwave frequencies[J]. Journal of the American Ceramic Society, 66:, 421(1983).
[12] NOMURA S, TOYAMA K, KANETA K. Ba(Mg1/3Ta2/3)O3 ceramics with temperature-stable high dielectric constant and low microwave loss[J]. Japanese Journal of Applied Physics, 21(1982).
[13] WU H, DAVIES P K. Influence of non-stoichiometry on the structure and properties of Ba(Zn1/3Nb2/3)O3 microwave dielectrics: Ⅱ. Compositional variations in pure BZN[J]. Journal of the American Ceramic Society, 89, 2250(2006).
[14] NOMURA S, TOYAMA K, KANETA K. Ba(Mg1/3Ta2/3)O3 ceramics with temperature-stable high dielectric constant and low microwave loss[J]. Japanese Journal of Applied Physics, 21(1982).
[15] VARMA M R, SEBASTIAN M T. Effect of dopants on microwave dielectric properties of Ba(Zn1/3Nb2/3)O3 ceramics[J]. Journal of the European Ceramic Society, 27, 2827(2007).
[16] KHALAM L A, ANJANA P S, SEBASTIAN M T. The effect of dopants on the dielectric properties of Ba(B'1/2Ta1/2)O3 (B=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Yb, and In) microwave ceramics[J]. International Journal of Applied Ceramic Technology, 5, 571(2008).
[17] GUO H H, FU M S, ZHOU D et al. Design of a high-efficiency and-gain antenna using novel low-loss, temperature-stable Li2Ti1-
[18] WANG K, ZHAO Y, CHEN X et al. Effects of sintering temperature on microstructure and varistor performances of ZnO-SrCO3-Co2O3 ceramics[J]. Ceramics International, 50, 51162(2024).
[19] SWIKKER K R J, KANAGASABAPATHY H, MANICKAM I N et al. Effect of sintering temperature on grain growth and mechanical properties of copper/graphene nanosheet composite[J]. Diamond and Related Materials, 110:, 108111(2020).
[20] PAREDES-GOYES B, JAUFFRES D, MISSIAEN J M et al. Grain growth in sintering: a discrete element model on large packings[J]. Acta Materialia, 218:, 117182(2021).
[21] HE G, JIANG Y, SONG K et al. Ultrahigh
[22] DU C, FU M S, ZHOU D et al. Dielectric resonator antenna with Y3Al5O12 transparent dielectric ceramics for 5G millimeter-wave applications[J]. Journal of the American Ceramic Society, 104, 4659(2021).
[23] DU C, ZHOU D, HAO S Z et al. High-quality-factor AlON transparent ceramics for 5 GHz Wi-Fi aesthetically decorative antennas[J]. ACS Applied Materials & Interfaces, 13, 46866(2021).
[24] HE G, ZHAO Z, LIU Y et al. Sintering characteristics, phase structure and microwave dielectric properties of novel BaCeO3 ceramics[J]. Materials Research Bulletin, 172:, 112790(2024).
[25] QI C, WANG F, LAI Y et al. Temperature stability of Li2TiO3- Zn2SiO4 microwave dielectric ceramics[J]. European Journal of Inorganic Chemistry, 2022(2022).
[26] LIU Y, HE G, NIE Y et al. Influence of sintering characteristics and structural properties on the microwave dielectric properties of non-stoichiometric Ca3Mn2+
[27] PAN H L, CHENG L, WU H T. Relationships between crystal structure and microwave dielectric properties of Li2(Mg1-
[28] LIN I N, CHIA C T, LIU H L et al. Intrinsic dielectric and spectroscopic behavior of perovskite Ba(Ni1/3Nb2/3)O3-Ba(Zn1/3Nb2/3)O3 microwave dielectric ceramics[J]. Journal of Applied Physics, 102:, 044112(2007).
[29] LIU B, HUANG Y H, SONG K X et al. Structural evolution and microwave dielectric properties in Sr2(Ti1-
[30] WANG G, ZHANG D, GAN G et al. Synthesis, crystal structure and low loss of Li3Mg2NbO6 ceramics by reaction sintering process[J]. Ceramics International, 45, 19766(2019).
[31] SHANNON R D. Dielectric polarizabilities of ions in oxides and fluorides[J]. Journal of Applied Physics, 73, 348(1993).
[32] BOSMAN A J, HAVINGA E E. Temperature dependence of dielectric constants of cubic ionic compounds[J]. Physical Review, 129, 1593(1962).
[33] PENN S J, ALFORD N M, TEMPLETON A et al. Effect of porosity and grain size on the microwave dielectric properties of sintered alumina[J]. Journal of the American Ceramic Society, 80, 1885(2005).
[34] LIAO Q, LI L, REN X et al. New low-loss microwave dielectric material ZnTiNbTaO8[J]. Journal of the American Ceramic Society, 94, 3237(2011).
Get Citation
Copy Citation Text
Guoqiang HE, Kaiheng ZHANG, Zhentao WANG, Jian BAO, Zhaochen XI, Zhen FANG, Changhao WANG, Wei WANG, Xin WANG, Jiapei JIANG, Xiangkun LI, Di ZHOU.
Category:
Received: Nov. 11, 2024
Accepted: --
Published Online: Sep. 2, 2025
The Author Email: Di ZHOU (zhoudi1220@xjtu.edu.cn)