Acta Laser Biology Sinica, Volume. 28, Issue 1, 1(2019)

Advances in Optical Manipulation of Cells inside Living Animals

GONG Lei, LI Yinmei*, WANG Haowei, and WANG Ziqiang
Author Affiliations
  • [in Chinese]
  • show less
    References(43)

    [1] [1] ASHKIN A, DZIEDZIC J M, BJORKHOLM J E, et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optics Letters, 1986, 11(5): 288-290.

    [2] [2] ASHKIN A, DZIEDZIC J M, YAMANE T. Optical trapping and manipulation of single cells using infrared laser beams[J]. Nature, 1987, 330(6150): 769-771.

    [3] [3] A light touch[J]. Nature Photonics, 2011, 5: 315.

    [4] [4] LI Yinmei, GONG Lei, LI Di, et al. Progress in optical tweezers technology[J]. Chinese Journal of Lasers, 2015, 42(1): 10100101-10100120.

    [5] [5] LI Yinmei. Optical tweezers technology[M].Beijing:Scence Press, 2015.

    [6] [6] ZHANG H, LIU K K. Optical tweezers for single cells[J]. Journal of the Royal Society Interface, 2008, 5(24): 671-690.

    [7] [7] ASHKIN A, SCHTZE K, DZIEDZIC J M, et al. Force generation of organelle transport measured in vivo by an infrared laser trap[J]. Nature, 1990, 348(6299): 346-368.

    [8] [8] NORREGAARD K, JAUFFRED L, BERG-SRENSEN K, et al. Optical manipulation of single molecules in the living cell[J]. Physical Chemistry Chemical Physics, 2014, 16(25): 12614-12624.

    [9] [9] LI Yinmei, WEI Xunbin, ZHU Tian, et al. A study on increace mutagenic efficacy by laser combining irradiated with γ-ray[J]. Acta Laser Biology Sinica, 1993, 2(1): 193-198.

    [10] [10] CAPITANIO M, CANEPARI M, MAFFEI M, et al. Ultrafast force-clamp spectroscopy of single molecules reveals load dependence of myosin working stroke[J]. Nature Methods, 2012, 9(10): 1013-1019.

    [11] [11] FAZAL F M, BLOCK S M. Optical tweezers study life under tension[J]. Nature Photonics, 2011, 5(6): 318-321.

    [12] [12] NEUMAN K C, NAGY A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy[J]. Nature Methods, 2008, 5(6): 491-505.

    [13] [13] NOOM M C, VAN DEN BROEK B, VAN MAMEREN J, et al. Visualizing single DNA-bound proteins using DNA as a scanning probe[J]. Nature Methods, 2007, 4(12): 1031-1036.

    [14] [14] LI Yinmei. The optical tweezer technology and advances in biological applications[J]. Acta Laser Biology Sinica, 2003, 12(1): 55.

    [15] [15] The Nobel Prize in Physics 2018. https://www.nobelprize.org/prizes/physics/2018/press-release/

    [16] [16] LI Yinmei, ZHU Tian, WEI Xunbin, et al.The dynamic monitor of the control of living cell by optical tweezers[J]. Acta Laser Biology Sinica, 1992, 1(4): 170-173.

    [17] [17] ZHONG M C, GONG L, ZHOU J H, et al. Optical trapping of red blood cells in living animals with a water immersion objective[J]. Optics Letter, 2013, 38(23): 5134-5137.

    [18] [18] FAVRE-BULLE I A, STILGOE A B, RUBINSZTEIN-DUNLOP H, et al. Optical trapping of otoliths drives vestibular behaviours in larval zebrafish[J]. Nature Communications, 2017, 8(1): 630.

    [19] [19] HRNER F, MEISSNER R, POLALI S, et al. Holographic optical tweezers-based in vivo manipulations in zebrafish embryos[J]. Journal of Biophotonics, 2017, 10(11): 1492-1501.

    [20] [20] JOHANSEN P L, FENAROLI F, EVENSEN L, et al. Optical micromanipulation of nanoparticles and cells inside living zebrafish[J]. Nature Communications, 2016, 7: 10974.

    [21] [21] ZHONG M C, WEI X B, ZHOU J H, et al. Trapping red blood cells in living animals using optical tweezers[J]. Nature Communications, 2013, 4: 1768.

    [22] [22] ZHONG M C, WANG Z Q, LI Y M. Aberration compensation for optical trapping of cells within living mice[J]. Applied Optics, 2017, 56(7): 1972-1976.

    [23] [23] FAVRE-BULLE I A, VANWALLEGHEM G, STILGOE A, et al. Optical trapping in zebrafish[C]. Proceedings of the SPIE Nanoscience Engineering, 2018.

    [24] [24] STAUNTON J R, BLEHM B, DEVINE A, et al. In situ calibration of position detection in an optical trap for active microrheology in viscous materials[J]. Optics Express, 2017, 25(3): 1746-1761.

    [25] [25] HARLEPP S, THALMANN F, FOLLAIN G, et al. Hemodynamic forces can be accurately measured in vivo with optical tweezers[J]. Molecular Biology of the Cell, 2017, 28(23): 3252-3260.

    [26] [26] POPOFF S M, LEROSEY G, CARMINATI R, et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media[J]. Physical Review Letters, 2010, 104(10): 100601.

    [27] [27] YU P, ZHAO Q, HU X, et al. Tailoring arbitrary polarization states of light through scattering media[J]. Applied Physics Letters, 2018, 113(12): 121102.

    [28] [28] MOSK A P, LAGENDIJK A, LEROSEY G, et al. Controlling waves in space and time for imaging and focusing in complex media[J]. Nature Photonics, 2012, 6(5): 283-292.

    [29] [29] VELLEKOOP I M, LAGENDIJK A, MOSK A P. Exploiting disorder for perfect focusing[J]. Nature Photonics, 2010, 4(5): 320-322.

    [30] [30] VELLEKOOP I M, MOSK A P. Focusing coherent light through opaque strongly scattering media[J]. Optics Letters, 2007, 32(16): 2309-2311.

    [31] [31] CˇIMáR T, MAZILU M, DHOLAKIA K. In situ wavefront correction and its application to micromanipulation[J]. Nature Photonics, 2010, 4(6): 388-394.

    [32] [32] XU X, LIU H, WANG L V. Time-reversed ultrasonically encoded optical focusing into scattering media[J]. Nature Photonics, 2011, 5(3): 154-157.

    [33] [33] LAI P, WANG L, TAY J W, et al. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media[J]. Nature Photonics, 2015, 9(2): 126-132.

    [34] [34] HORSTMEYER R, RUAN H, YANG C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue[J]. Nature Photonics, 2015, 9(9): 563-571.

    [35] [35] PARK J H, YU Z, LEE K, et al. Perspective: Wavefront shaping techniques for controlling multiple light scattering in biological tissues: toward in vivo applications[J]. APL Photonics, 2018, 3(10): 100901.

    [36] [36] YAO J, WANG L V. Photoacoustic microscopy[J]. Laser Photonics Reviews, 2013, 7(5): 758-778.

    [37] [37] WANG L V. Multiscale photoacoustic microscopy and computed tomography[J]. Nature Photonics, 2009, 3(9): 503-509.

    [38] [38] WANG L V, HU S. Photoacoustic tomography: in vivo imaging from organelles to organs[J]. Science, 2012, 335(6075): 1458-1462.

    [39] [39] ZHANG H F, MASLOV K, STOICA G, et al. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging[J]. Nature Biotechnology, 2006, 24(24): 848-851.

    [40] [40] YANG J, GONG L, XU X, et al. Motionless volumetric photoacoustic microscopy with spatially invariant resolution[J]. Nature Communications, 2017, 8(1): 780.

    [41] [41] LI L, YEH C, HU S, et al. Fully motorized optical-resolution photoacoustic microscopy[J]. Optics Letters, 2014, 39(7): 2117-2120.

    [42] [42] WANG L, MASLOV K, WANG L V. Single-cell label-free photoacoustic flowoxigraphy in vivo[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(15): 5759-5764.

    [43] [43] GIGAN S. Optical microscopy aims deep[J]. Nature Photonics, 2017, 11(1): 14-16.

    Tools

    Get Citation

    Copy Citation Text

    GONG Lei, LI Yinmei, WANG Haowei, WANG Ziqiang. Advances in Optical Manipulation of Cells inside Living Animals[J]. Acta Laser Biology Sinica, 2019, 28(1): 1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 18, 2018

    Accepted: --

    Published Online: Mar. 23, 2019

    The Author Email: Yinmei LI (liyinmei@ustc.edu.cn)

    DOI:10.3969/j.issn.1007-7146.2019.01.001

    Topics