Infrared and Laser Engineering, Volume. 51, Issue 7, 20210638(2022)
Domain adaptation for object detection in the frequency domain
[1] [1] Zhu J Y, Park T, Isola P, et al. Unpaired imagetoimage translation using cycleconsistent adversarial wks[C]Proceedings of the IEEE International Conference on Computer Vision, 2017: 22232232.
[2] Fan L, Zhao H, Hu H, et al. Survey of target detection based on deep convolutional neural networks[J]. Optics and Precision Engineering, 28, 1152-1164(2020).
[3] [3] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies f accurate object detection semantic segmentation[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2014: 580587.
[4] [4] Girshick R. Fast RCNN[C]Proceedings of the IEEE International Conference on Computer Vision, 2015: 14401448.
[5] [5] Ren S, He K, Girshick R, et al. Faster RCNN: Towards realtime object detection with region proposal wks[C] Advances in Neural Infmation Processing Systems, 2015, 28: 9199.
[6] [6] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detect[C]European Conference on Computer Vision, 2016: 2137.
[7] Redmon J, Farhadi A. YOLOv3: An incremental improvement[J]. ArXiv Preprint, ArXiv, 1804.02767(2018).
[8] [8] Lin T Y, Goyal P, Girshick R, et al. Focal loss f dense object detection[C]Proceedings of the IEEE International Conference on Computer Vision, 2017: 29802988.
[9] Wu T, Zhang Z, Liu Y, et al. A lightweight small object detection algorithm based on improved SSD[J]. Infrared and Laser Engineering, 47, 0703005(2018).
[10] Di X, Lin Z, Chen S. Dim moving object detection based on projection into the 2D frequency domain[J]. Infrared and Laser Engineering, 42, 3447-3452(2013).
[11] Wu Y, Wang Y, Sun H, et al. LSS-target detection in complex sky backgrounds[J]. Chinese Optics, 12, 853-865(2019).
[12] Gong X, Ouyang H. Improvement of tiny YOLOV3 target detection[J]. Optics and Precision Engineering, 28, 988-995(2020).
[13] Wang C, An J, Jiang X, et al. Region proposal optimization algorithm based on convolutional neural networks[J]. Chinese Optics, 12, 1348-1361(2019).
[14] [14] Ganin Y, Lempitsky V. Unsupervised domain adaptation by backpropagation[C]International Conference on Machine Learning, PMLR, 2015: 11801189.
[15] [15] Xie R, Yu F, Wang J, et al. Multilevel domain adaptive learning f crossdomain detection[C]Proceedings of the IEEE International Conference on Computer Vision Wkshops, 2019.
[16] [16] Hsu H K, Yao C H, Tsai Y H, et al. Progressive domain adaptation f object detection[C]Proceedings of the IEEE Winter Conference on Applications of Computer Vision, 2020: 749757.
[17] [17] Zheng Y, Huang D, Liu S, et al. Crossdomain object detection through coarsetofine feature adaptation[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2020: 1376613775.
[18] Li H, Wan R, Wang S, et al. Unsupervised domain adaptation in the wild via disentangling representation learning[J]. International Journal of Computer Vision, 129, 267-283(2021).
[19] [19] Liu M Y, Breuel T, Kautz J. Unsupervised imagetoimage translation wks[C]Advances in Neural Infmation Processing Systems, 2017: 700708.
[20] [20] Xu K, Qin M, Sun F, et al. Learning in the frequency domain[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2020: 17401749.
[21] [21] Yang Y, Soatto S. FDA: Fourier domain adaptation f semantic segmentation[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2020: 40854095.
[22] [22] Hu J, Shen L, Sun G. Squeezeexcitation wks[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2018: 71327141.
[23] [23] He K, Zhang X, Ren S, et al. Deep residual learning f image recognition[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2016: 770778.
[24] [24] Paszke A, Gross S, Massa F, et al. Pytch: An imperative style, highperfmance deep learning library[C]Advances in Neural Infmation Processing Systems, 2019, 32: 80268037.
Get Citation
Copy Citation Text
Yuenan Li, Haoyu Xu, Hao Dong. Domain adaptation for object detection in the frequency domain[J]. Infrared and Laser Engineering, 2022, 51(7): 20210638
Category: Image processing
Received: Jan. 20, 2022
Accepted: --
Published Online: Dec. 20, 2022
The Author Email: