Chinese Journal of Liquid Crystals and Displays, Volume. 35, Issue 8, 785(2020)
All-solution processed quantum dot light-emitting diodes with low turn-on voltage
[1] [1] MURRAY C B, NORRIS D J, BAWENDI M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites [J]. Journal of the American Chemical Society, 1993, 115(19): 8706-8715.
[2] [2] PENG Z A, PENG X G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor [J]. Journal of the American Chemical Society, 2001, 123(1): 183-184.
[3] [3] CHEN O, ZHAO J, CHAUHAN V P, et al. Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking [J]. Nature Materials, 2013, 12(5): 445-451.
[4] [4] ZHOU J H, ZHU M Y, MENG R Y, et al. Ideal CdSe/CdS core/shell nanocrystals enabled by entropic ligands and their core size-, shell thickness-, and ligand-dependent photoluminescence properties [J]. Journal of the American Chemical Society, 2017, 139(46): 16556-16567.
[5] [5] DAI X L, DENG Y Z, PENG X G, et al. Quantum-dot light-emitting diodes for large-area displays: Towards the dawn of commercialization [J]. Advanced Materials, 2017, 29(14): 1607022.
[10] [10] DAI X L, ZHANG Z X, JIN Y Z, et al. Solution-processed, high-performance light-emitting diodes based on quantum dots [J]. Nature, 2014, 515(7525): 96-99.
[11] [11] WANG L S, LIN J, HU Y S, et al. Blue quantum dot light-emitting diodes with high electroluminescent efficiency [J]. ACS Applied Materials & Interfaces, 2017, 9(44): 38755-38760.
[12] [12] FU Y, JIANG W, KIM D, et al. Highly efficient and fully solution-processed inverted light-emitting diodes with charge control interlayers [J]. ACS Applied Materials & Interfaces, 2018, 10(20): 17295-17300.
[13] [13] SHEN H B, GAO Q, ZHANG Y B, et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency [J]. Nature Photonics, 2019, 13(3): 192-197.
[14] [14] SONG J J, WANG O Y, SHEN H B, et al. Over 30% external quantum efficiency light-emitting diodes by engineering quantum dot-assisted energy level match for hole transport layer [J]. Advanced Functional Materials, 2019, 29(33): 1808377.
[15] [15] WU Z C, CHEN Z H, DU X, et al. Transparent, conductive carbon nanotube films [J]. Science, 2004, 305(5688): 1273-1276.
[16] [16] ZHANG D Y, CAI Y, SHEN Y, et al. A Solid electrode for detection of silver ion based on copper-based metal-organic frameworks doped by multi-walled carbon nanotubes [J].Chinese Journal of Analytical Chemistry, 2018, 46(11): 1794-1801. (in Chinese)
[17] [17] NA S I, KIM S S, JO J, et al. Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes [J]. Advanced Materials, 2008, 20(21): 4061-4067.
[18] [18] KRANTZ J S, TOBIAS R, MOSES S, et al. Spray-coated silver nanowires as top electrode layer in semitransparent P3HT: PCBM-based organic solar cell devices [J]. Advanced Functional Materials, 2013, 23(13): 1711-1717.
[19] [19] ZUO S S, XI S. Study on fabrication process and actuating performance of conductive polymer actuator based on polypyrrole [J].Chinese Journal of Analytical Chemistry, 2019, 47(12): 1960-1966. (in Chinese)
[20] [20] SEO J T, HAN J, LIM T, et al. Fully transparent quantum dot light-emitting diode integrated with graphene anode and cathode [J]. ACS Nano, 2014, 8(12): 12476-12482.
[21] [21] DONG Z J, ZHANG P, LI S H, et al. Flexible graphene platform-based electrochemical sensor for sensitive determination of dopamine [J].Chinese Journal of Analytical Chemistry, 2018, 46(7): 1039-1046. (in Chinese)
[23] [23] LI D D, LAI W Y, ZHANG Y Z, et al. Printable transparent conductive films for flexible electronics [J]. Advanced Materials, 2018, 30(10): 1704738.
[24] [24] ZENG W J, WU H B, ZHANG C, et al. Polymer light-emitting diodes with cathodes printed from conducting Ag paste [J]. Advanced Materials, 2007, 19(6): 810-814.
[25] [25] ZHENG H, ZHENG Y N, LIU N L, et al. All-solution processed polymer light-emitting diode displays [J]. Nature Communications, 2013, 4: 1971.
[26] [26] SONG C, HU Z H, LUO Y, et al. Organic/inorganic hybrid EIL for all-solution-processed OLEDs [J]. Advanced Electronic Materials, 2018, 4(2): 1700380.
[27] [27] LEE B R, JUNG E D, NAM Y S, et al. Amine-based polar solvent treatment for highly efficient inverted polymer solar cells [J]. Advanced Materials, 2014, 26(3): 494-500.
[28] [28] SPERLING R A, PARAK W J. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 368(1915): 1333-1383.
[29] [29] MOON K S, DONG H, MARIC R, et al. Thermal behavior of silver nanoparticles for low-temperature interconnect applications [J]. Journal of Electronic Materials, 2005, 34(2): 168-175.
[30] [30] CHEN J Q,NING H L, FANG Z Q, et al. Reduced contact resistance of a-IGZO thin film transistors with inkjet-printed silver electrodes [J]. Journal of Physics D: Applied Physics, 2018, 51(16): 165103.
Get Citation
Copy Citation Text
CAO Li-juan, JIANG Cong-biao, LUO Yu, LI Miao-zi, LI Jia-li, CUN Yang-ke, WANG Jian, PENG Jun-biao, CAO Yong. All-solution processed quantum dot light-emitting diodes with low turn-on voltage[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(8): 785
Category:
Received: Jan. 6, 2020
Accepted: --
Published Online: Aug. 18, 2020
The Author Email: CAO Li-juan (1686746845@qq.com)