NUCLEAR TECHNIQUES, Volume. 47, Issue 1, 010603(2024)

Method of predicting transient thermal hydraulic parameters of the core based on the gated recurrent unit model of soft attention

Siqi CHUN1, Huan FENG3, Anni ZHANG4, and Pengcheng ZHAO1,2、*
Author Affiliations
  • 1School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
  • 2Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment, University of South China, Hengyang 421001, China
  • 3School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
  • 4School of Computer Science, University of South China, Hengyang 421001, China
  • show less
    Figures & Tables(11)
    Adaptive RBF neural network structure
    GRU structure
    Soft attention diagram
    GRU prediction topological structure based on the attention mechanism
    Comparison of time series before and after denoising (a) Un-denoised and denoised mass flow time series, (b) Un-denoised and denoised temperature time series
    Relationship between the super parameter of step length and average relative error (a) Mass flow time series, (b) Temperature time series
    Prediction results (a) Mass flow time series, (b) Temperature time series
    Prediction results of mass flow with a step of 3
    • Table 1. Comparison of neural network prediction results

      View table
      View in Article

      Table 1. Comparison of neural network prediction results

      预测变量

      Predictive variables

      神经网络算法

      Neural network algorithm

      平均相对误差

      Mean relative error

      质量流量

      Mass flow

      自适应BP神经网络Adaptive BP neural network0.062 9(连续预测Continuous prediction)
      自适应RBF神经网络Adaptive RBF neural network0.059 2(连续预测Continuous prediction)
      注意力+GRU Attention+GRU0.042 9

      温度

      Temperature

      自适应BP神经网络Adaptive BP neural network0.011 3(连续预测Continuous prediction)
      自适应RBF神经网络Adaptive RBF neural network0.008 8(连续预测Continuous prediction)
      注意力+GRU Attention+GRU0.004 2
    • Table 2. Comparison of DB8 wavelet denoising ablation experiments

      View table
      View in Article

      Table 2. Comparison of DB8 wavelet denoising ablation experiments

      预测变量Predictive variables质量流量Mass flow温度Temperature
      原始数据Raw data0.051 60.004 7
      去噪数据Denoising data0.042 90.004 2
    • Table 3. Comparison of attention mechanism ablation experiments

      View table
      View in Article

      Table 3. Comparison of attention mechanism ablation experiments

      预测变量

      Predictive variables

      质量流量

      Mass flow

      温度

      Temperature

      GRU基准网络 GRU benchmark network0.049 00.004 3
      GRU基准网络+Attention GRU benchmark network + Attention0.042 90.004 2
    Tools

    Get Citation

    Copy Citation Text

    Siqi CHUN, Huan FENG, Anni ZHANG, Pengcheng ZHAO. Method of predicting transient thermal hydraulic parameters of the core based on the gated recurrent unit model of soft attention[J]. NUCLEAR TECHNIQUES, 2024, 47(1): 010603

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: May. 29, 2023

    Accepted: --

    Published Online: Mar. 7, 2024

    The Author Email: ZHAO Pengcheng (赵鹏程)

    DOI:10.11889/j.0253-3219.2024.hjs.47.010603

    Topics