Chinese Journal of Lasers, Volume. 50, Issue 18, 1813002(2023)
Research Progress on Glass‑Based Multi‑dimensional Optical Storage Technology
[2] Gu M, Li X P, Cao Y Y. Optical storage arrays: a perspective for future big data storage[J]. Light: Science & Applications, 3, e177(2014).
[3] Wu C X, Hu Q, Zhao M et al. Review on magnetic-optical-electric hybrid storage technology[J]. Laser & Optoelectronics Progress, 56, 070003(2019).
[4] Lin X A, Liu J P, Hao J Y et al. Collinear holographic data storage technologies[J]. Opto-Electronic Advances, 3, 190004(2020).
[5] Zhai Y Y, Cao L, Liu Y et al. A review of polarization-sensitive materials for polarization holography[J]. Materials, 13, 5562(2020).
[6] Yoneda N, Saita Y, Nomura T. Computer-generated-hologram-based holographic data storage using common-path off-axis digital holography[J]. Optics Letters, 45, 2796-2799(2020).
[7] Qu G Y, Yang W H, Song Q H et al. Reprogrammable meta-hologram for optical encryption[J]. Nature Communications, 11, 5484(2020).
[8] Yoneda N, Nobukawa T, Morimoto T et al. Common-path angular-multiplexing holographic data storage based on computer-generated holography[J]. Optics Letters, 46, 2920-2923(2021).
[9] Hu P, Li J H, Jin J C et al. Highly sensitive photopolymer for holographic data storage containing methacryl polyhedral oligomeric silsesquioxane[J]. ACS Applied Materials & Interfaces, 14, 21544-21554(2022).
[10] Wang J Y, Tan X D, Qi P L et al. Linear polarization holography[J]. Opto-Electronic Science, 1, 210009(2022).
[11] Tan X D, Lin X, Wu A A et al. High density collinear holographic data storage system[J]. Frontiers of Optoelectronics, 7, 443-449(2014).
[12] Chen K X, Guan Z Q, Li Z L et al. Computer-generated holographic nanoprinting[J]. Laser & Photonics Reviews, 17, 2200448(2023).
[13] Ouyang X, Xu Y, Feng Z W et al. Polychromatic and polarized multilevel optical data storage[J]. Nanoscale, 11, 2447-2452(2019).
[14] Ouyang X, Xu Y, Xian M C et al. Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing[J]. Nature Photonics, 15, 901-907(2021).
[15] Li X, Chen Q M, Zhang X E et al. Time-sequential color code division multiplexing holographic display with metasurface[J]. Opto-Electronic Advances, 220060(2023).
[16] Zhao R Z, Sain B, Wei Q S et al. Multichannel vectorial holographic display and encryption[J]. Light: Science & Applications, 7, 95(2018).
[17] Zheng Y B, Liu H Y, Xiang J et al. Hot luminescence from gold nanoflowers and its application in high-density optical data storage[J]. Optics Express, 25, 9262-9275(2017).
[18] Zijlstra P, Chon J W M, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature, 459, 410-413(2009).
[19] Li X P, Cao Y Y, Gu M. Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam[J]. Optics Letters, 36, 2510-2512(2011).
[20] Li X P, Cao Y Y, Tian N A et al. Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate[J]. Optica, 2, 567-570(2015).
[21] Wang B, Shi J M, Zhang T Y et al. Improved lateral resolution with an annular vortex depletion beam in STED microscopy[J]. Optics Letters, 42, 4885-4888(2017).
[22] Zhang Z X, Li Z Y, Lei J A et al. Environmentally robust immersion supercritical lens with an invariable sub-diffraction-limited focal spot[J]. Optics Letters, 46, 2296-2299(2021).
[23] Zhu L W, Cao Y Y, Chen Q Q et al. Near-perfect fidelity polarization-encoded multilayer optical data storage based on aligned gold nanorods[J]. Opto-Electronic Advances, 4, 210002(2021).
[24] Chen X, Gu M. Two-beam ultrafast laser scribing of graphene patterns with 90-nm subdiffraction feature size[J]. Ultrafast Science, 2022, 0001(2022).
[25] Zhang J Y, Gecevičius M, Beresna M et al. Seemingly unlimited lifetime data storage in nanostructured glass[J]. Physical Review Letters, 112, 033901(2014).
[26] Sun K, Sun S Z, Qiu J R. Review on research progress of glasses used for optical storage[J]. Laser & Optoelectronics Progress, 57, 111407(2020).
[27] Glezer E N, Milosavljevic M, Huang L et al. Three-dimensional optical storage inside transparent materials[J]. Optics Letters, 21, 2023-2025(1996).
[28] Qiu J R, Miura K, Inouye H et al. Three-dimensional optical storage inside a silica glass by using a focused femtosecond pulsed laser[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 141, 699-703(1998).
[30] Lin Z Y, Hong M H. Femtosecond laser precision engineering: from micron, submicron, to nanoscale[J]. Ultrafast Science, 2021, 9783514(2021).
[31] Yao J L, Qi D L, Liang H T et al. Exploring femtosecond laser ablation by snapshot ultrafast imaging and molecular dynamics simulation[J]. Ultrafast Science, 2022, 9754131(2022).
[32] Li X X, Li X, Wang Y M et al. Laser precision machining lights up intelligent manufacturing[J]. Chinese Journal of Lasers, 49, 1902001(2022).
[33] Yong J L, Yang Q, Hou X et al. Nature-inspired superwettability achieved by femtosecond lasers[J]. Ultrafast Science, 2022, 9895418(2022).
[34] Sudrie L, Franco M, Prade B et al. Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses[J]. Optics Communications, 171, 279-284(1999).
[35] Shimotsuma Y, Kazansky P G, Qiu J R et al. Self-organized nanogratings in glass irradiated by ultrashort light pulses[J]. Physical Review Letters, 91, 247405(2003).
[36] Taylor R, Hnatovsky C, Simova E. Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass[J]. Laser & Photonics Reviews, 2, 26-46(2008).
[37] Zhang J E, Tan D Z, Cao K Q et al. Large area patterning of ultra-high thermal-stable structural colors in transparent solids[J]. Chinese Optics Letters, 20, 030501(2022).
[38] Lei Y H, Wang H J, Shayeganrad G et al. Ultrafast laser nanostructuring in transparent materials for beam shaping and data storage[J]. Optical Materials Express, 12, 3327-3355(2022).
[39] Wang L, Zhang X, Wang Y et al. Femtosecond laser direct writing for eternal data storage: advances and challenges[J]. Chinese Journal of Lasers, 49, 1002504(2022).
[40] Shimotsuma Y, Sakakura M, Kazansky P G et al. Ultrafast manipulation of self-assembled form birefringence in glass[J]. Advanced Materials, 22, 4039-4043(2010).
[41] Beresna M, Gecevičius M, Kazansky P G et al. Exciton mediated self-organization in glass driven by ultrashort light pulses[J]. Applied Physics Letters, 101, 053120(2012).
[42] Sakakura M, Lei Y H, Wang L et al. Ultralow-loss geometric phase and polarization shaping by ultrafast laser writing in silica glass[J]. Light: Science & Applications, 9, 15(2020).
[43] Wang H J, Lei Y H, Wang L et al. 100-layer error-free 5D optical data storage by ultrafast laser nanostructuring in glass[J]. Laser & Photonics Reviews, 16, 2100563(2022).
[44] Yan Z, Gao J C, Beresna M et al. Near-field mediated 40 nm in-volume glass fabrication by femtosecond laser[J]. Advanced Optical Materials, 10, 2101676(2022).
[45] Lei Y H, Sakakura M, Wang L et al. High speed ultrafast laser anisotropic nanostructuring by energy deposition control via near-field enhancement[J]. Optica, 8, 1365-1371(2021).
[46] Yan Z, Li P Y, Gao J C et al. Anisotropic nanostructure generated by a spatial-temporal manipulated picosecond pulse for multidimensional optical data storage[J]. Optics Letters, 46, 5485-5488(2021).
[47] Zhang B, Wang Z, Sun K et al. Recent research progress on ultrafast laser-induced selective crystallization in glasses[J]. Journal of the Chinese Ceramic Society, 50, 1033-1045(2022).
[48] Zhang B, Tan D Z, Liu X F et al. Self-organized periodic crystallization in unconventional glass created by an ultrafast laser for optical attenuation in the broadband near-infrared region[J]. Advanced Optical Materials, 7, 1900593(2019).
[49] Cao J, Poumellec B, Mazerolles L et al. Nanoscale phase separation in lithium niobium silicate glass by femtosecond laser irradiation[J]. Journal of the American Ceramic Society, 100, 115-124(2017).
[50] Cao J, Lancry M, Brisset F et al. Femtosecond laser-induced crystallization in glasses: growth dynamics for orientable nanostructure and nanocrystallization[J]. Crystal Growth & Design, 19, 2189-2205(2019).
[51] Zhang B, Wang Z, Tan D Z et al. Ultrafast laser inducing continuous periodic crystallization in the glass activated via laser-prepared crystallite-seeds[J]. Advanced Optical Materials, 9, 2001962(2021).
[52] Zhang B, Tan D Z, Wang Z et al. Self-organized phase-transition lithography for all-inorganic photonic textures[J]. Light: Science & Applications, 10, 93(2021).
[53] Wang Z, Tan D Z, Qiu J R. Single-shot photon recording for three-dimensional memory with prospects of high capacity[J]. Optics Letters, 45, 6274-6277(2020).
[54] Wang Z, Zhang B, Tan D Z et al. Long-term optical information storage in glass with ultraviolet-light-preprocessing-induced enhancement of the signal-to-noise ratio[J]. Optics Letters, 46, 3937-3940(2021).
[55] Wang Z, Zhang B, Tan D Z et al. Ostensibly perpetual optical data storage in glass with ultra-high stability and tailored photoluminescence[J]. Opto-Electronic Advances, 6, 220008(2023).
[56] Miura K, Qiu J R, Fujiwara S et al. Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions[J]. Applied Physics Letters, 80, 2263-2265(2002).
[57] Zheng Y, Yao Y H, Deng L Z et al. Valence state manipulation of Sm3+ ions via a phase-shaped femtosecond laser field[J]. Photonics Research, 6, 144-148(2018).
[58] Lin S S, Lin H, Huang Q M et al. A photostimulated BaSi2O5: Eu2+, Nd3+ phosphor-in-glass for erasable-rewritable optical storage medium[J]. Laser & Photonics Reviews, 13, 1970022(2019).
[59] Lin S S, Lin H, Ma C G et al. High-security-level multi-dimensional optical storage medium: nanostructured glass embedded with LiGa5O8: Mn2+ with photostimulated luminescence[J]. Light: Science & Applications, 9, 22(2020).
[60] Yuan L F, Jin Y H, Su Y et al. Optically stimulated luminescence phosphors: principles, applications, and prospects[J]. Laser & Photonics Reviews, 14, 2000123(2020).
[61] Long Z W, Wen Y G, Zhou J H et al. No-interference reading for optical information storage and ultra-multiple anti-counterfeiting applications by designing targeted recombination in charge carrier trapping phosphors[J]. Advanced Optical Materials, 7, 1900006(2019).
[62] Wu H, Wang M Y, Huai L W et al. Optical storage and operation based on photostimulated luminescence[J]. Nano Energy, 90, 106546(2021).
[63] Wei X, Zhao W W, Zheng T et al. Laser-modified luminescence for optical data storage[J]. Chinese Physics B, 31, 117901(2022).
[64] Hu Z, Huang X J, Yang Z W et al. Reversible 3D optical data storage and information encryption in photo-modulated transparent glass medium[J]. Light: Science & Applications, 10, 140(2021).
[65] Royon A, Bourhis K, Bellec M et al. Silver clusters embedded in glass as a perennial high capacity optical recording medium[J]. Advanced Materials, 22, 5282-5286(2010).
[66] Petit Y, Danto S, Guérineau T et al. On the femtosecond laser-induced photochemistry in silver-containing oxide glasses: mechanisms, related optical and physico-chemical properties, and technological applications[J]. Advanced Optical Technologies, 7, 291-309(2018).
[67] Kunwar P, Soman P. Direct laser writing of fluorescent silver nanoclusters: a review of methods and applications[J]. ACS Applied Nano Materials, 3, 7325-7342(2020).
[68] Shakhgildyan G Y, Ziyatdinova M Z, Vetchinnikov M P et al. Thermally-induced precipitation of gold nanoparticles in phosphate glass: effect on the optical properties of Er3+ ions[J]. Journal of Non-Crystalline Solids, 550, 120408(2020).
[69] Tan D Z, Jiang P, Xu B B et al. Single-pulse-induced ultrafast spatial clustering of metal in glass: fine tunability and application[J]. Advanced Photonics Research, 2, 2000121(2021).
[70] Zhao H P, Cun Y K, Bai X et al. Entirely reversible photochromic glass with high coloration and luminescence contrast for 3D optical storage[J]. ACS Energy Letters, 7, 2060-2069(2022).
[71] Tan D Z, China Z L H, Sun K et al. Photo-processing of perovskites: current research status and challenges[J]. Opto-Electronic Science, 1, 220014(2022).
[72] Huang X J, Guo Q Y, Kang S L et al. Three-dimensional laser-assisted patterning of blue-emissive metal halide perovskite nanocrystals inside a glass with switchable photoluminescence[J]. ACS Nano, 14, 3150-3158(2020).
[73] Huang X J, Guo Q Y, Yang D D et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium[J]. Nature Photonics, 14, 82-88(2020).
[74] Sun K, Tan D Z, Song J et al. Highly emissive deep-red perovskite quantum dots in glass: photoinduced thermal engineering and applications[J]. Advanced Optical Materials, 9, 2100094(2021).
[75] Sun K, Tan D Z, Fang X Y et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass[J]. Science, 375, 307-310(2022).
[76] Sun K, Li X K, Tan D Z et al. Pure blue perovskites nanocrystals in glass: ultrafast laser direct writing and bandgap tuning[J]. Laser & Photonics Reviews, 17, 2370022(2023).
[77] Hu Y Z, Ye Y, Zhang W C et al. Laser-induced inverted patterning of nanocrystals embedded glass for micro-light-emitting diodes[J]. Journal of Materials Science & Technology, 150, 138-144(2023).
[78] Li X K, Tan D Z, Liu Y et al. Ultrafast laser direct writing of nanocrystals in glass and its application[J]. Bulletin of the Chinese Ceramic Society, 41, 3781-3794(2022).
[79] Qiu J R, Jiang X W, Zhu C S et al. Manipulation of gold nanoparticles inside transparent materials[J]. Angewandte Chemie International Edition, 43, 2230-2234(2004).
[80] Tan D Z, Zhang B, Qiu J R. Ultrafast laser direct writing in glass: thermal accumulation engineering and applications[J]. Laser & Photonics Reviews, 15, 2000455(2021).
[81] Wang Y T, Zhou H Q, Yan J X et al. Advances in computational optics based on deep learning[J]. Chinese Journal of Lasers, 48, 1918004(2021).
[82] Lamon S, Zhang Q M, Gu M. Nanophotonics-enabled optical data storage in the age of machine learning[J]. APL Photonics, 6, 110902(2021).
[83] Wang J, Hayasaki Y, Zhang F Y et al. Three-dimensional holographic femtosecond laser parallel processing method with the fractional Fourier transform for glass substrates[J]. Ceramics International, 48, 16364-16373(2022).
[84] Ren H R, Lin H, Li X P et al. Three-dimensional parallel recording with a Debye diffraction-limited and aberration-free volumetric multifocal array[J]. Optics Letters, 39, 1621-1624(2014).
[85] Zhou Y, Li R Z, Yu X H et al. Progress in study and application of optical field modulation technology based on liquid crystal spatial light modulators (invited)[J]. Acta Photonica Sinica, 50, 1123001(2021).
[86] Hossein Eybposh M, Caira N W, Atisa M et al. DeepCGH: 3D computer-generated holography using deep learning[J]. Optics Express, 28, 26636-26650(2020).
[87] Peng Y F, Choi S, Padmanaban N et al. Neural holography with camera-in-the-loop training[J]. ACM Transactions on Graphics, 39, 185.
[88] Wu J C, Liu K X, Sui X M et al. High-speed computer-generated holography using an autoencoder-based deep neural network[J]. Optics Letters, 46, 2908-2911(2021).
[89] Salter P S, Booth M J. Adaptive optics in laser processing[J]. Light: Science & Applications, 8, 110(2019).
[90] Mauclair C, Mermillod-Blondin A, Huot N et al. Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction[J]. Optics Express, 16, 5481-5492(2008).
[91] Simmonds R D, Salter P S, Jesacher A et al. Three dimensional laser microfabrication in diamond using a dual adaptive optics system[J]. Optics Express, 19, 24122-24128(2011).
[92] Jin Y C, Zhang Y Y, Hu L J et al. Machine learning guided rapid focusing with sensor-less aberration corrections[J]. Optics Express, 26, 30162-30171(2018).
[93] Zhang Y Y, Wu C X, Song Y C et al. Machine learning based adaptive optics for doughnut-shaped beam[J]. Optics Express, 27, 16871-16881(2019).
[94] Wang Y, Wang H, Li Y M et al. High-accuracy, direct aberration determination using self-attention-armed deep convolutional neural networks[J]. Journal of Microscopy, 286, 13-21(2022).
[95] Zhang H Z, Xu J M, Li H Y et al. Modulation of high-quality internal multifoci based on modified three-dimensional Fourier transform[J]. Optics Letters, 48, 900-903(2023).
[96] Rivenson Y, Göröcs Z, Günaydin H et al. Deep learning microscopy[J]. Optica, 4, 1437-1443(2017).
[97] Wiecha P R, Lecestre A, Mallet N et al. Pushing the limits of optical information storage using deep learning[J]. Nature Nanotechnology, 14, 237-244(2019).
[98] Wang H D, Rivenson Y, Jin Y Y et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy[J]. Nature Methods, 16, 103-110(2019).
[99] Qiao C, Li D, Guo Y T et al. Evaluation and development of deep neural networks for image super-resolution in optical microscopy[J]. Nature Methods, 18, 194-202(2021).
Get Citation
Copy Citation Text
Jiajia Wu, Kai Gao, Chenduan Chen, Zhiqiang Wang, Jianrong Qiu, Dezhi Tan. Research Progress on Glass‑Based Multi‑dimensional Optical Storage Technology[J]. Chinese Journal of Lasers, 2023, 50(18): 1813002
Category: micro and nano optics
Received: Apr. 10, 2023
Accepted: Jun. 27, 2023
Published Online: Aug. 28, 2023
The Author Email: Tan Dezhi (wctdz@zju.edu.cn)