Laser & Optoelectronics Progress, Volume. 60, Issue 17, 1714001(2023)

Multi-Objective Optimization of Laser Cladding Parameters Based on BP Neural Network

Dewei Deng1,3、*, Hao Jiang1, Zhenhua Li1, Xueguan Song2, Qi Sun3, and Yong Zhang3
Author Affiliations
  • 1Research Center of Laser 3D Printing Equipment and Application Engineering Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning , China
  • 2School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, Liaoning , China
  • 3Shenyang Blower Group Corporation, Shenyang 110869, Liaoning , China
  • show less
    Figures & Tables(25)
    Morphology of cladding powder
    Schematic diagram of laser cladding system
    Schematic diagram of laser cladding coating
    Pareto and main effects plots of dilution rates. (a) Pareto chart; (b) main effects chart
    Residual and main effects plots of micro hardness. (a) Pareto diagram; (b) main effect diagram
    Pareto and main effects plots of height. (a) Pareto chart; (b) main effects chart
    Pareto and main effects plots of width. (a) Pareto chart; (b) main effects chart
    Schematic diagram of BP neural network
    GA-BP neural network flow chart
    Comparison curves of response volume test and predicted values with coefficient of determination R2.(a) Height; (b) width; (c) dilution rate; (d) hardness
    Plot of predicted and expected value fit of response volume.(a) Width; (b) height; (c) dilution rate; (d) hardness
    Relationship between the refined process parameters and gray correlation degree
    Relative error of validation sample performance data for neural networks
    • Table 1. Chemical composition of the substrate and Ferro 55 alloy powder

      View table

      Table 1. Chemical composition of the substrate and Ferro 55 alloy powder

      MaterialMass fraction /%
      CMnPSSiCrNiFeMo
      304 stainless steel≤0.08≤2.00≤0.045≤0.030≤1.0018.0-20.08.0-11.0Bal.
      Ferro 550.351.10.37Bal.2
    • Table 2. Full factor experiment level table

      View table

      Table 2. Full factor experiment level table

      Process parameterNotationLevel
      Laser power /WLP10001200140016001800
      Scanning speed /(mm·s-1SS45678
      Flow rate of protective gas /(L·min-1FG678910
    • Table 3. Morphological data and hardness data of some samples

      View table

      Table 3. Morphological data and hardness data of some samples

      No.LP /WSS /(mm·s-1FG /(L·min-1W /μmH /μmη /%DH /HV
      11000463775.8111085.78118.394893.50
      21000473839.0201230.67019.766640.44
      31000483653.0071149.45124.586816.16
      41000493749.7401101.47026.765631.60
      510004103843.952963.087733.214643.54
      61000563620.0631200.11317.523878.22
      71000573589.9321429.4456.577951.22
      81000583632.8411128.76617.657847.00
      91000593633.1351113.51920.976822.62
      1010005103395.6801021.66023.473832.60
      111000663378.0671241.91711.610848.58
      121000673380.2891159.29013.168833.76
      131000683549.4651399.0603.687954.66
      141000693596.0151002.32420.108749.00
      1510006103431.845986.543423.052665.12
      1161800763983.0891296.85528.123705.48
      1171800773904.3841268.99728.857667.70
      1181800783624.6231208.51434.520566.60
      1191800784292.7231396.21619.470821.52
      12018007103374.230746.50046.727480.96
      1211800863842.0541322.70824.122814.26
      1221800873834.4201294.36021.603762.53
      1231800883917.3581266.67526.265733.98
      1241800893280.5121314.89724.122575.80
      12518008103953.457984.488431.864595.90
    • Table 4. Analysis of variance results for dilution rates

      View table

      Table 4. Analysis of variance results for dilution rates

      SourcedfAdjusted SSDAdjusted MSF valueP value
      S=4.17128 R2=87.21% Adjusted R2=86.21% Predicted R2=84.98%
      Model913640.01515.5687.100.000
      LP1451.4451.3725.940.000
      SS160.660.613.480.065
      FG147.647.592.740.101
      LP×LP1429.8429.8024.700.000
      SS×SS147.547.502.730.101
      FG×FG1126.3126.297.260.008
      LP×SS14.74.670.270.605
      LP×FG123.823.831.370.244
      SS×FG164.064.013.680.058
      Residual1152001.017.40
      Lack of fit1141887.716.560.150.990
      Pure error1113.3113.25
      Cor total12415641.0
    • Table 5. Analysis of variance results for micro hardness

      View table

      Table 5. Analysis of variance results for micro hardness

      SourcedfAdjusted SSDAdjusted MSF valueP value
      S=94.5079 R2=63.26% Adjusted R2=60.38% Predicted R2=57.00%
      Model9176821319646822.000.000
      LP164966649667.270.008
      SS135281352813.950.049
      FG1000.000.998
      LP×LP163104631047.070.009
      SS×SS132684326843.660.058
      FG×FG11531530.020.896
      LP×SS17687680.090.770
      LP×FG1692969290.780.380
      SS×FG140400.000.947
      Residual11510271518932
      Lack of fit11499465987250.270.944
      Pure error13249232492
      Cor total1242795364
    • Table 6. Analysis of variance results for height

      View table

      Table 6. Analysis of variance results for height

      SourcedfAdjusted SSDAdjusted MSF valueP value
      S=99.1298 R2=49.66% Adjusted R2=45.72% Predicted R2=39.58%
      Model9111472012385812.600.000
      LP112319123191.250.265
      SS1319631960.330.570
      FG195049950499.670.002
      LP×LP1842184210.860.357
      SS×SS16126120.060.803
      FG×FG113753213753214.000.000
      LP×SS12732730.030.868
      LP×FG110017100171.020.315
      SS×FG131310.000.955
      Residual11511300729827
      Lack of fit114111245697580.550.818
      Pure error11761617616
      Cor total1242244792
    • Table 7. Analysis of variance results for width

      View table

      Table 7. Analysis of variance results for width

      SourcedfAdjusted SSDAdjusted MSF valueP value
      S=171.605 R2=78.09% Adjusted R2=76.38% Predicted R2=74.06%
      Model912073380134148745.550.000
      LP12189542189547.440.007
      SS11231781231784.180.043
      FG119186191860.650.421
      LP×LP133293332931.130.290
      SS×SS11541540.010.943
      FG×FG1692669260.240.629
      LP×SS128494284940.970.327
      LP×FG12000912000916.790.010
      SS×FG143861438611.490.225
      Residual115338656829448
      Lack of fit1143163389277490.120.995
      Pure error1223179223179
      Cor total12415459948
    • Table 8. Gray correlation degree of some samples

      View table

      Table 8. Gray correlation degree of some samples

      No.LP /WSS /(mm·s-1FG /(L·min-1GRC
      11000460.5455
      21000470.4814
      31000480.5468
      41000490.5495
      510004100.5891
      61000560.5075
      71000570.4698
      81000580.5105
      91000590.5254
      1010005100.5506
      111000660.4564
      121000670.4691
      131000680.4647
      141000690.5239
      1510006100.5242
      2510008100.3947
      1061800460.6250
      1161800760.5705
      1171800770.5704
      1181800780.5028
      1191800780.5482
      12018007100.5502
      1211800860.5344
      1221800870.5060
      1231800880.5505
      1241800890.4607
      12518008100.6033
    • Table 9. Parameter level design

      View table

      Table 9. Parameter level design

      Process parameterParameter rangeUpward gradientNumber of levels
      LP /W1000-18001081
      SS /(mm·s-14-80.141
      FG /(L·min-16-100.59
    • Table 10. Sample parameters for validation

      View table

      Table 10. Sample parameters for validation

      Sample numberLP /WSS /(mm·s-1FG /(L·min-1
      T113705.07.5
      T214106.58.0
      T310606.26.0
      T417007.59.0
      T515004.07.0
      H110904.410.0
      H210904.410.0
      H310904.410.0
    • Table 11. Test and predicted values of the validated samples by neural networks

      View table

      Table 11. Test and predicted values of the validated samples by neural networks

      SampleW /μmH /μmη /%DH /HV
      T13882.11287.524.069715.30
      T13993.51234.330.000602.05
      T23885.31301.921.143754.24
      T23723.91198.025.800707.74
      T33405.71299.412.671772.44
      T33504.11277.912.732905.74
      T43907.81259.227.893660.16
      T43771.51200.032.221610.27
      T54129.71191.832.907529.98
      T54225.31209.138.730535.17
    • Table 12. Test and predicted values of the validated samples by neural networks

      View table

      Table 12. Test and predicted values of the validated samples by neural networks

      SampleW /μmH /μmη /%DH /HVGRC
      H13715.31112.532.564518.720.5448
      H23459.6925.141.638530.900.5668
      H33666.21030.935.639525.470.5403
      H’3714.2967.429.972611.420.6797
    Tools

    Get Citation

    Copy Citation Text

    Dewei Deng, Hao Jiang, Zhenhua Li, Xueguan Song, Qi Sun, Yong Zhang. Multi-Objective Optimization of Laser Cladding Parameters Based on BP Neural Network[J]. Laser & Optoelectronics Progress, 2023, 60(17): 1714001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Jun. 12, 2022

    Accepted: Aug. 5, 2022

    Published Online: Sep. 1, 2023

    The Author Email: Dewei Deng (cailiaoqingqibing@163.com)

    DOI:10.3788/LOP221821

    Topics