Optics and Precision Engineering, Volume. 31, Issue 20, 3065(2023)

Defect detection of low-resolution ceramic substrate image based on knowledge distillation

Feng GUO1, Xiaodong SUN1, Qibing ZHU1、*, Min HUANG1, and Xiaoxiang XU2
Author Affiliations
  • 1Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi 2422, China
  • 2Wuxi CK Electric Control Equipment Co., Ltd, Wuxi 14400, China
  • show less
    References(22)

    [1] [1] 郭峰, 朱启兵, 黄敏, 等. 基于改进YOLOV4的陶瓷基板瑕疵检测[J]. 光学 精密工程, 2022, 30(13): 1631-1641. doi: 10.37188/OPE.20223013.1631GUOF, ZHUQ B, HUANGM, et al. Defect detection in ceramic substrate based on improved YOLOV4[J]. Opt. Precision Eng., 2022, 30(13): 1631-1641.(in Chinese). doi: 10.37188/OPE.20223013.1631

    [2] LI J C, FANG F M, MEI K F et al[M]. Multi-Scale Residual Network for Image Super-Resolution, 527-542(2018).

    [3] QI L, KUEN J, GU J X et al. Multi-scale aligned distillation for low-resolution detection[C], 14438-14448(20).

    [5] HE T, SHEN C H, TIAN Z et al. Knowledge adaptation for efficient semantic segmentation[C], 578-587(15).

    [6] LIU Y F, SHU C Y, WANG J D et al. Structured knowledge distillation for dense prediction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 7035-7049(2023).

    [7] CHEN G B, CHOI W, YU X et al. Learning efficient object detection models with knowledge distillation[C], 742-751(2017).

    [8] WANG T, YUAN L, ZHANG X P et al. Distilling object detectors with fine-grained feature imitation[C], 4928-4937(15).

    [9] ZHANG L, MA K. Improve object detection with feature-based knowledge distillation: towards accurate and efficient detectors[C](2020).

    [10] [10] 褚晶辉, 史李栋, 井佩光, 等. 适用于目标检测的上下文感知知识蒸馏网络[J]. 浙江大学学报(工学版), 2022, 56(3): 503-509.CHUJ H, SHIL D, JINGP G, et al. Context-aware knowledge distillation network for object detection[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(3): 503-509.(in Chinese)

    [11] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C], 13708-13717(20).

    [12] LIU S, QI L, QIN H F et al. Path aggregation network for instance segmentation[C], 8759-8768(18).

    [13] [13] 黄震华, 杨顺志, 林威, 等. 知识蒸馏研究综述[J]. 计算机学报, 2022, 45(3)624-653. doi: 10.11897/SP.J.1016.2022.00624HUANGZ H, YANGS Z, LINW, et al. Knowledge distillation: a survey[J]. Chinese Journal of Computers, 2022, 45(3)624-653. (in Chinese). doi: 10.11897/SP.J.1016.2022.00624

    [14] FU K, SHI P P, SONG Y F et al. Ultrafast video attention prediction with coupled knowledge distillation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 10802-10809(2020).

    [15] LI B Y, LIU Y, WANG X G. Gradient harmonized single-stage detector[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 33, 8577-8584(2019).

    [17] REN S Q, HE K M, GIRSHICK R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    [18] CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C], 6154-6162(18).

    Tools

    Get Citation

    Copy Citation Text

    Feng GUO, Xiaodong SUN, Qibing ZHU, Min HUANG, Xiaoxiang XU. Defect detection of low-resolution ceramic substrate image based on knowledge distillation[J]. Optics and Precision Engineering, 2023, 31(20): 3065

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Apr. 10, 2023

    Accepted: --

    Published Online: Nov. 28, 2023

    The Author Email: Qibing ZHU (zhuqib@163.com)

    DOI:10.37188/OPE.20233120.3065

    Topics