Chinese Journal of Lasers, Volume. 39, Issue s1, 103002(2012)
Current Research Status and Development Trends of Laser Welding
[1] [1] Zuo Tiechuan. Laser Materials Processing of High Strength Aluminum Alloys[M]. Beijing: National Defence Industry Press, 2002
[2] [2] Mei Lifang, Chen Genyu, Jin Xiangzhong et al.. Research on laser welding of high-strength galvanized automobile steel sheets[J]. Opt. & Lasers in Engng, 2009, 47(11): 1117~1124
[3] [3] D. A. Belforte. Comments on David Belforte′s annual industrial laser forecast[C]. 2010 Annual Economic Review and Forecast, Industrial Laser Solutions, 2011
[4] [4] R. T. Brown. Keyhole welding studies with a moderate-power, high-brightness fiber laser[J]. J. Laser Appl., 2008, 20(4): 201~208
[5] [5] I. P. Mercer, A. Comley, S. Davis-Ansted et al.. Euv light source and laser considerations for stalability and high-energy conversion efficiency[C]. SPIE, 2002, 4760: 463~473
[6] [6] Sumpf Bernd, Adamiec Pawel, Zorn Martin et al.. Nearly diffraction-limited tapered lasers at 675 nm with 1-W output power and conversion efficiencies above 30%[J]. IEEE Photon. Technol. Lett., 2011, 23(4): 266~268
[7] [7] Sumpf Bernd, Zorn Martin, Staske Ralf et al.. 3-W broad area lasers and 12-W bars with conversion efficiencies up to 40% at 650 nm[J]. IEEE J. Sel. Top. Quantum Electron., 2007, 13(5): 1188~1193
[8] [8] A. Ancona, T. Sibillano, L. Tricarico et al.. Comparison of two different nozzles for laser beam welding of AA5083 aluminium alloy[J]. J. Mater. Process. Technol., 2005, 164-165: 971~977
[9] [9] T. W. Juhl, F. O. Olsen. A plasma control and gas protection system for laser welding of stainless steel[C]. San Diege: Laser Materials Processing Conference, 1997. G248~G255
[10] [10] A. Ancona, T. Sibillano, P. M. Lugara et al.. An analysis of the shielding gas flow from a coaxial conical nozzle during high power CO2 laser welding[J]. J. Phys. D: Appl. Phys., 2006, 39(3): 563~574
[11] [11] Tang Xiahui, Zhou Jingxing, Zhou Yi et al.. Control of laser-induced plasma by assistant gas through co-axial double nozzle[J]. China Mechanical Engineering, 2003, 14(14): 15~17
[12] [12] R. Fabbro, M. Hamadou, L. Sabatier et al.. Study and optimization of shielding gas nozzle used for laser welding[C]. Dearborn: Laser Materials Processing Conference, 2000. C166~C172
[13] [13] Wang Hong, Shi Yaowu, Gong Shuili et al.. Effect of assist gas flow on the gas shielding during laser deep penetration welding[J]. J. Mater. Process. Technol., 2007, 184(1-3): 379~385
[14] [14] Reisgen Uwe, Schleser Markus, Mokrov Oleg et al.. Shielding gas influences on laser weldability of tailored blanks of advanced automotive steels[J]. Appl. Surface Sci., 2010, 257(5): 1401~1406
[15] [15] T. Sibillano, A. Ancona, V. Berardi et al.. A study of the shielding gas influence on the laser beam welding of AA5083 aluminium alloys by in-process spectroscopic investigation[J]. Opt. & Lasers in Engng., 2006, 44(10): 1039~1051
[16] [16] Xiao Rongshi, Mei Hanhua, Zuo Tiechuan. Influence of assistant gases on the shielding thresholds of laser induced plasma during high power CO2 laser penetration welding[J]. Chinese J. Lasers, 1998, A25(11): 86~91
[18] [18] J. T. Norris, C. V. Robino, D. A. Hirschfeld et al.. Effects of laser parameters on porosity formation: Investigating millimeter scale continous wave Nd:YAG laser welds[J]. Welding J., 2011, 90(10): 198S~203S
[19] [19] A. Salminen. The effects of filler wire feed on the efficiency of laser welding[C]. SPIE, 2003, 4831: 263~268
[20] [20] J. M. Lin, B. C. Hwang. Clad profiles in edge welding using a coaxial powder filler nozzle[J]. Opt. & Laser Technol., 2001, 33(4): 267~275
[21] [21] H. C. Wu, L. W. Tsay, C. Chen. Laser beam welding of 2205 duplex stainless steel with metal powder additions[J]. ISIJ International, 2004, 44(10): 1720~1726
[22] [22] T. Forsman, J. Powell, C. Magnusson. Nd:YAG laser lap welding of coated aluminium alloys[C]. San Diego: Laser Materials Processing Conference, 1997. G113~G120
[24] [24] W. M. Steen. Arc augmented laser processing of materials[J]. J. Appl. Phys., 1980, 51(11): 5636~5641
[26] [26] C. Roepke, S. Liu, S. Kelly et al.. Hybrid laser arc welding process evaluation on DH36 and EH36 steel[J]. Weld. J., 2010, 89(7): 140S~150S
[27] [27] Y. B. Chen, Z. L. Lei, L. Q. Li et al.. Experimental study on welding characteristics of CO2 laser tig hybrid welding process[J]. Sci. & Technol. Weld. & Join., 2006, 11(4): 403~411
[28] [28] C. Kim, W. Choi, J. Kim et al.. Relationship between the weld ability and the process parameters for laser-tig hybrid welding of galvanized steel sheets[J]. Mater. Trans., 2008, 49(1): 179~186
[29] [29] R. Kaul, H. Kumar, B. T. Rao et al.. Studies on characteristics of CO2 laser-gtaw hybrid welding of austenitic stainless steel[J]. J.Laser Appl., 2010, 22(2): 79~85
[30] [30] Y. Naito, S. Katayama, A. Matsunawa. Keyhole behavior and liquid flow in molten pool during laser-arc hybrid welding[C]. SPIE, 2003, 4831: 357~362
[31] [31] Y. Naito, M. Mizutani, S. Katayama. Penetration characteristics in YAG laser and tig arc hybrid welding, and arc and plasma/plume behavior during welding. Welding phenomena in hybrid welding using YAG laser and tig arc[J]. Weld. Inter., 2006, 20(10): 777~784
[32] [32] Wu Shikai. Investigation on Laser-Arc Interaction and Novel Laser-TIG Arc Hybrid Welding Processes[D]. Beijing: Beijing University of Technology, 2010
[33] [33] Chen Yanbin, Chen Jie, Li Liqun et al.. Properties of arc and weld in laser-tig hybrid process[J]. Trans. China Weld. Inst., 2003, 24(1): 55~57
[34] [34] C. Thomy, F. Vollertsen. Influence of magnetic fields on dilution during laser welding of aluminium[J]. Adv. Mater. Res., 2005, 6-8: 179~186
[35] [35] H. C. Tse, H. C. Man, T. M. Yue. Effect of magnetic field on plasma control during CO2 laser welding[J]. Opt. & Laser Technol., 1999, 31(5): 363~368
[36] [36] J. Zhou, H. L. Tsai, Asme. Application of electromagnetic force in laser welding[C]. Seattle: ASME 2007 International Engineering Congress and Exposition, 2008. 1025~1030
[37] [37] H. C. Tse, H. C. Man, T. M. Yue. Effect of magnetic field on plasma control during CO2 laser welding[J]. Opt. & Laser Technol., 1999, 31(35): 363~368
[38] [38] Yoshiaki Arata, Nobuyuki Abe, Tatsiharu Oda. Fundamental phenomena in high power CO2 laser welding[J]. Trans. JWRI, 1985, 14(1): 5~11
[39] [39] Katayama S., Kobayashi Y., Mizutani M. et al.. Effect of vacuum on penetration and defects in laser welding[J]. J. Laser Appl., 2001, 13(5): 187~192
[40] [40] S. Spruk, L. Koller, D. Railic et al.. Vacuum tight laser welds[J]. Vacuum, 1992, 43(5-7): 769~771
[41] [41] Zhao Haiyan, Niu Wenchong, Zhang Bin et al.. Modelling of keyhole dynamics and porosity formation considering the adaptive keyhole shape and three-phase coupling during deep-penetration laser welding[J]. J. Phys. D: Appl. Phys., 2011, 44(48): 485302
[42] [42] Y. Javid, M. Ghoreishi, S. Shamsaei. A three-dimensional heat transfer simulation of laser full penetration welding of rene-80 super alloy[J]. Lasers in Engng., 2012, 22(1-2): 1~11
[43] [43] Y. Peng, W. Z. Chen, C. Wang et al.. The behavior and its control of plasma produced during laser welding[C]. Jacksonville: Congress on ICALEO 2001: Application of Laser & Electro-Optics, 2001. 475~482
[44] [44] G. Ehlen, A. Ludwig, P. R. Sahm. Simulation of time-dependent pool shape during laser spot welding: Transient effects[J]. Metall. & Mater. Trans. a-Phys. Metall. & Mater. Sci., 2003, 34A(12): 2947~2961
[45] [45] B. Ribic, R. Rai, T. DebRoy. Numerical simulation of heat transfer and fluid flow in gta/laser hybrid welding[J]. Sci. & Technol. Weld. & Join., 2008, 13(8): 683~693
[46] [46] D. V. Bedenko, O. B. Kovalev, I. V. Krivtsun. Simulation of plasma dynamics in a keyhole during laser welding of metal with deep penetration[J]. J. Phys. D: Appl. Phys., 2010, 43(10): 105501
[47] [47] J. Zhou, H. L. Tsai. Effects of electromagnetic force on melt flow and porosity prevention in pulsed laser keyhole welding[J]. Int. J. Heat & Mass Transfer, 2007, 50(11-12): 2217~2235
[48] [48] Pang Shengyong, Chen Liliang, Zhou Jianxin et al.. A three-dimensional sharp interface model for self-consistent keyhole and weld pool dynamics in deep penetration laser welding[J]. J. Phys. D: Appl. Phys., 2011, 44(2): 025301
Get Citation
Copy Citation Text
Shen Yifu, Zhang Shenghai. Current Research Status and Development Trends of Laser Welding[J]. Chinese Journal of Lasers, 2012, 39(s1): 103002
Category: laser manufacturing
Received: Jan. 1, 2012
Accepted: --
Published Online: May. 28, 2012
The Author Email: Yifu Shen (yifushen@nuaa.edu.cn)