Acta Optica Sinica, Volume. 43, Issue 22, 2223003(2023)
Assisted Microring Resonator Based on One-Dimensional Photonic Crystal Nanobeam Cavity
[1] Xia H, Sharpe S J, Merriam A J et al. Electromagnetically induced transparency in atoms with hyperfine structure[J]. Physical Review A, 56, R3362-R3365(1997).
[2] Lukin M D, Imamoğlu A. Controlling photons using electromagnetically induced transparency[J]. Nature, 413, 273-276(2001).
[3] Zhang Y P, Brown A W, Xiao M. Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows[J]. Physical Review Letters, 99, 123603(2007).
[4] Du Y G, Zhang Y P, Zuo C C et al. Controlling four-wave mixing and six-wave mixing in a multi-Zeeman-sublevel atomic system with electromagnetically induced transparency[J]. Physical Review A, 79, 063839(2009).
[5] Zhang Y Q, Wu Z K, Belić M R et al. Photonic floquet topological insulators in atomic ensembles[J]. Laser & Photonics Reviews, 9, 331-338(2015).
[6] Xu Q F, Sandhu S, Povinelli M L et al. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency[J]. Physical Review Letters, 96, 123901(2006).
[7] Yang X D, Yu M B, Kwong D L et al. All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities[J]. Physical Review Letters, 102, 173902(2009).
[8] Zhang J, Bai W L, Cai L K et al. Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems[J]. Applied Physics Letters, 99, 181120(2011).
[9] Kekatpure R D, Barnard E S, Cai W S et al. Phase-coupled plasmon-induced transparency[J]. Physical Review Letters, 104, 243902(2010).
[10] Chai Z, Hu X Y, Zhu Y et al. Low-power and ultrafast all-optical tunable plasmon-induced transparency in plasmonic nanostructures[J]. Applied Physics Letters, 102, 201119(2013).
[11] Shi P, Zhou G Y, Deng J et al. Tuning all-optical analog to electromagnetically induced transparency in nanobeam cavities using nanoelectromechanical system[J]. Scientific Reports, 5, 14379(2015).
[12] Xiao B G, Tong S J, Fyffe A et al. Tunable electromagnetically induced transparency based on graphene metamaterials[J]. Optics Express, 28, 4048-4057(2020).
[13] Yahiaoui R, Burrow J A, Mekonen S M et al. Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling[J]. Physical Review B, 97, 155403(2018).
[14] Cao P F, Li Y, Wu Y Y et al. Electromagnetically induced transparency-like terahertz graphene metamaterial with tunable carrier mobility[J]. IEEE Sensors Journal, 21, 14799-14806(2021).
[15] Kim T T, Kim H D, Zhao R K et al. Electrically tunable slow light using graphene metamaterials[J]. ACS Photonics, 5, 1800-1807(2018).
[16] Wang P Y, Jin T, Meng F Y et al. Numerical investigation of nematic liquid crystals in the THz band based on EIT sensor[J]. Optics Express, 26, 12318-12329(2018).
[17] Yahiaoui R, Manjappa M, Srivastava Y K et al. Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices[J]. Applied Physics Letters, 111, 021101(2017).
[18] Liu C J, Sang C L, Wu X S et al. One-dimensional photonic crystal groove microring resonators and its sensing characteristics[J]. Acta Optica Sinica, 40, 2413002(2020).
[19] Liu C J, Wang J W, Wu X S et al. Sensing characteristics of a grating-assisted slit micro-ring resonator[J]. Acta Optica Sinica, 42, 1613001(2022).
[20] Hryniewicz J V, Absil P P, Little B E et al. Higher order filter response in coupled microring resonators[J]. IEEE Photonics Technology Letters, 12, 320-322(2000).
[21] Kim K H, Fan X D. Surface sensitive microfluidic optomechanical ring resonator sensors[J]. Applied Physics Letters, 105, 191101(2014).
[22] Wu W, Sun Q B, Wang G X et al. Tunable all-optical AND logic gates via four-wave mixing based on graphene-on-silicon slot microring resonators[J]. Optics & Laser Technology, 138, 106926(2021).
[23] Totsuka K, Kobayashi N, Tomita M. Slow light in coupled-resonator-induced transparency[J]. Physical Review Letters, 98, 213904(2007).
[24] Zheng C, Jiang X S, Hua S Y et al. Controllable optical analog to electromagnetically induced transparency in coupled high-Q microtoroid cavities[J]. Optics Express, 20, 18319-18325(2012).
[25] Xu Q F, Dong P, Lipson M. Breaking the delay-bandwidth limit in a photonic structure[J]. Nature Physics, 3, 406-410(2007).
[26] Scheuer J, Sukhorukov A A, Kivshar Y S. All-optical switching of dark states in nonlinear coupled microring resonators[J]. Optics Letters, 35, 3712-3714(2010).
[27] Han S, Cong L F, Gao F et al. Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials[J]. Annalen Der Physik, 528, 352-357(2016).
[28] Chen M M, Xiao Z Y, Lu X J et al. Simulation of dynamically tunable and switchable electromagnetically induced transparency analogue based on metal-graphene hybrid metamaterial[J]. Carbon, 159, 273-282(2020).
[29] Fan C Z, Ren P W, Jia W et al. Tunable plasmon induced transparency in patterned graphene metamaterial with different carrier mobility[J]. Superlattices and Microstructures, 136, 106295(2019).
[30] Xiao S Y, Wang T, Liu T T et al. Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials[J]. Carbon, 126, 271-278(2018).
[31] Wang X P, Kong M, Xu Y M. Slotted photonic crystal microring resonators[J]. Fiber and Integrated Optics, 36, 91-100(2017).
[32] Leng B R, Chen M G, Cai D P. Design, fabrication, and imaging of meta-devices[J]. Acta Optica Sinica, 43, 0822001(2023).
[33] Zhou X T, Zhang T, Yin X et al. Dynamically tunable electromagnetically induced transparency in graphene-based coupled micro-ring resonators[J]. IEEE Photonics Journal, 9, 6600609(2017).
[34] Dean C R, Young A F, Meric I et al. Boron nitride substrates for high-quality graphene electronics[J]. Nature Nanotechnology, 5, 722-726(2010).
[35] Xu W, Zhu Z H, Liu K et al. Toward integrated electrically controllable directional coupling based on dielectric loaded graphene plasmonic waveguide[J]. Optics Letters, 40, 1603-1606(2015).
[36] Zeng L Z, Ou Z T, Yang H Y et al. Sensitivity improvement of plasmonic optical fiber sensors with graphene-metal nanowire array[J]. Acta Optica Sinica, 42, 1906002(2022).
[37] Sun Y F. Electromagnetic induced transparency of a single A-type three-level atom in a cavity[D](2011).
Get Citation
Copy Citation Text
Jiangfeng Zhang, Longxue Liang, Yao Li, Xiaosuo Wu, Jiawei Wang, Chenglong Sun. Assisted Microring Resonator Based on One-Dimensional Photonic Crystal Nanobeam Cavity[J]. Acta Optica Sinica, 2023, 43(22): 2223003
Category: Optical Devices
Received: Jul. 7, 2023
Accepted: Sep. 6, 2023
Published Online: Nov. 20, 2023
The Author Email: Li Yao (344717184@qq.com)