OPTICS & OPTOELECTRONIC TECHNOLOGY, Volume. 20, Issue 4, 112(2022)
Development of Precision Optical Comb Ranging
[1] [1] Amann M C, Bosch T M, Lescure M, et al. Laser ranging: A critical review of unusual techniques for distance measurement[J]. Optical Engineering, 2001, 40(1): 10-20.
[2] [2] Bobroff N. Recent advances in displacement measuring interferometry[J]. Meas. Sci. Technol., 1993, 4: 907-926.
[3] [3] Nagano S, Yoshino T, Kunimori H, et al. Displacement measuring technique for satellite-to-satellite laser interferometer to determine Earth's gravity field[J]. Measurement Science & Technology, 2004, 15(12): 2406.
[4] [4] Smullin L D, Fiocco G. Optical echoes from the moon[J]. Nature, 1962, 194(4835): 1267-1267.
[5] [5] Kostamovaara J. Pulsed time-of-flight laser rangefinding techniques for industrial applications[C]. SPIE, 1992, 1614: 283-295.
[6] [6] Qin L, Huang Y, Xia F, et al. 5 nm nanogap electrodes and arrays by super-resolution laser lithography[J]. Nano Letters, 2020, 20, 4916-4923.
[7] [7] Kilpela A, Pennala R, Kostamovaara J. Precise pulsed time-of-flight laser range finder for industrial distance measurements[J]. Review of Scientific Instruments, 2001, 72(4): 2197-2202.
[8] [8] Estler W T, Edmundson K L, Peggs G N, et al. Large-scale metrology-an update[J]. Cirp Annals-Manufacturing Technology, 2002, 51(2): 587-609.
[9] [9] Schmitt R H, Peterek M, Morse E, et al. Advances in large-scale metrology-review and future trends[J]. Cirp Annals-Manufacturing Technology, 2016, 65(2): 643-65.
[10] [10] Kim S W. Metrology: Combs rule[J]. Nature Photonics, 2009, 3(6): 313.
[12] [12] H nsch T W. Nobel lecture: Passion for precision[J]. Review of Modern Physics, 2006, 78: 1297-1309.
[13] [13] Jones D J, Diddams S A, Ranka J K, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science, American Association for the Advancement of Science, 2000, 288(5466): 635-639.
[14] [14] Coddington I, Swann W C, Nenadovic L, et al. Rapid and precise absolute distance measurements at long range[J]. Nature Photonics, 2009, 3(6): 351-356.
[15] [15] Kim J, Cox J A, Chcn J, et al. Drift free femtosecond timing synchronization of remote optical and microwave sources[J]. Nature Photonics, 2008, 2(12): 733-736.
[16] [16] Diddams S A, Bergquist J C, Jefferts S R, et al. Standards of time and frequency at the outset of the 21st century [Review][J]. Science, 2004, 306(5700): 1318-1324.
[17] [17] Riehle F. Optical clock networks[J]. Nature Photonics, Nature Publishing Group, 2017, 11(1): 25-31.
[18] [18] R Zapatero Osorio. ESPRESSO: The next european exoplanet hunter[J]. Astronomische Nachrichten, 2014, 335(1): 8-20.
[19] [19] Ycas G, Giorgetta F R, Baumann E, et al. High coherence mid-infrared dual comb spectroscopy spanning 2.6 to 5.2 microns[J]. Nature Photonics, 2018, 12(4): 202-208.
[20] [20] Picqué N, H nsch T W. Frequency comb spectroscopy[J]. Nature Photonics, 2019, 13(3): 146-157.
[21] [21] Cundiff S T, Weiner A M. Optical arbitrary waveform generation[J]. Nature Photonics, 2010, 4(11): 760-766.
[22] [22] Newbury, Nathan R. Searching for applications with a fine-tooth comb[J]. Nature Photonics, 2011, 5(4): 186-188.
[23] [23] Ye J. Absolute measurement of a long, arbitrary distance to less than an optical fringe[J]. Optics Letters, 2004, 29(10): 1153-5.
[24] [24] Cui M, Zeitouny M G, Bhattacharya N, et al. High-accuracy long-distance measurements in air with a frequency comb laser[J]. Optics Letters, 2009, 34(13): 1982-1984.
[25] [25] Jin J, Kim Y J, Kim Y, et al. Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser[J]. Optics Express, 2006, 14(13): 5968-5974.
[26] [26] Schuhler N, Salvadé Y, Lévêque S, et al. Frequency-comb-referenced two-wavelength source for absolutedistance measurement[J]. Optics Letters, 2006, 31 (21): 3101-3103.
[27] [27] Wang G, Jang Y S, Hyun S, et al. Absolute positioning by multi-wavelength interferometry referenced to the frequency comb of a femtosecond laser[J]. Optics Express, 2015, 23(7): 9121-9129.
[28] [28] JooK N, KimS W. Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser[J]. Optics Express, 2006, 14(13): 5954.
[29] [29] Xu Y, Zhou W H, Liu D M, et al. Absolute distancemeasurement based on the optical frequency comb of afemtosecond laser[J]. Opto-Electron. Eng., 2011, 38(8): 79-83.
[30] [30] Park J, Jin J, Kim J A, et al. Absolute distancemeasurement method without a non -measurable rangeand directional ambiguity based on the spectral -domain interferometer using the optical comb of thefemtosecond pulse laser[J]. Applied Physics Letters , 2016, 109(24): 244103.
[31] [31] Lee J, KimY J, Lee K, et al. Time-of-flight measurement with femtosecond light pulses[J]. Nature Photonics, 2010, 4(10): 207-207.
[32] [32] Lee J, Lee K, Lee S, et al. High precision laser ranging by time-of-flight measurement of femtosecond pulses[J]. Measurement Science and Technology, 2012, 23(6): 065203.
[35] [35] LiuT A, Newbury N R, Coddington I. Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers[J]. Optics Express, 2011, 19(19): 18501-18509.
[36] [36] Kim W, Jang J, Han S, et al. Absolute laser ranging by time-of-flight measurement of ultrashort light pulses [Invited][J]. Journal of the Optical Society of America.A, Optics, Image Science, and Vision, 2020, 37(9): B27-B35.
[37] [37] Wright H, Sun J, Mckendrick D, et al. Two-photon dual-comb lidar[J]. Optics Express, 2021, 29(23): 37037-37047.
[38] [38] Mitchell T, Sun J, Reid D. Dynamic measurements at up to 130-kHz sampling rates using Ti: sapphire dual-comb distance metrology[J]. Optics Express, 2021, 29(25): 42119-42126.
[39] [39] Li Y, Cai Y, Li R, et al. Large-scale absolute distance measurement with dual free-runningall-polarization-maintaining femtosecond fiber lasers[J]. Chinese Optics Letters, 2019, 17(9): 59-63.
[40] [40] Lee J, Han S, Lee K, et al. Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength[J]. Measurement Science and Technology, 2013, 24(4): 045201.
[41] [41] Zhang H, Wu X, Wei H, et al. Compact dual-comb absolute distance ranging with an electric reference[J]. IEEE Photonics Journal, 2015, 7(3): 1-8.
[42] [42] Zhou S, Lin C, Yang Y, et al. Multi-pulse sampling dual-comb ranging method[J]. Optics Express, 2020, 28(3): 4058-4066.
[43] [43] Zhu Z, Xu G, Ni K, et al. Improving the accuracy of a dual-comb interferometer by suppressing the relative linewidth[J]. Measurement Science and Technology, 2018, 29(4): 45007.
[44] [44] Ideguchi T, Poisson A, Guelachvili G, et al. Adaptive real-time dual-comb spectroscopy[J]. Nature Communications, 2014, 5(1): 3375-3375
[45] [45] Roy J, Deschênes J D, Potvin S, et al. Continuous real-time correction and averaging for frequency comb interferometry[J]. Optics Express, 2012, 20(20): 21932-21939.
[46] [46] Haoyang Y, Kai N, Qian Z, et al. Digital error correction of dual-comb interferometer without external optical referencing information [J]. Optics Express, 2019, 27(20): 29425-29438.
[47] [47] Cao H, Song Y, Li R, et al. Singular spectrum analysis for low SNR signal processing in dual-comb distance measurements[C]. CLEO: Science and Innovations, 2019.
[49] [49] Zhou S, Lin C, Yang Y, et al. Multi-pulse sampling dual-comb ranging method[J]. Optics Express, 2020, 28(3): 4058-4066.
[50] [50] Kang H J, Chun B J, Jang Y, et al. Real-time compensation of the refractive index of air in distance measurement[J]. Optics Express, 2015, 23(20): 26377-26385.
[51] [51] Wang C, Deng Z, Gu C, et al. Line-scanspectrum-encoded imaging by dual-comb interferometry[J]. Optics Letters, 2018, 43(7): 1606.
[52] [52] Feng P, Kang J, Tan S, et al. Dual-comb spectrally encoded confocal microscopy by electro-optic modulators[J]. Optics Letters, 2019, 44(11): 2919.
[53] [53] Mizuno T, Tsuda T , Hase E, et al. Optical image amplification in dual-comb microscopy[J]. Scientific Reports, 2020, 10(1): 8338.
[54] [54] Trocha P, Karpov M, Ganin D, et al. Ultrafast optical ranging using microresonatorsoliton frequency combs[J]. Science, 2018, 359(6378): 887-891.
[55] [55] Riemensberger J, Lukashchuk A, Karpov M, et al. Massively parallel coherent laser ranging using a soliton microcomb[J]. Nature, 2020, 581(7807): 164-170.
[56] [56] Nakajima Y, Hata Y, Minoshima K, et al. High-coherence ultra-broadband bidirectional dual-comb fiber laser[J]. Optics Express, 2019, 27(5): 5931-5944.
[57] [57] HuD, Wu Z, Cao H, et al. Dual-comb absolute distance measurement of non-cooperative targets with a single free-running mode-locked fiber laser[J]. Optics Communications, 2020, 482: 126566.
Get Citation
Copy Citation Text
BAI Han-ze, WANG Xing-jie, PENG Kang-di, XIE Zhong-ye, LI Bo-yao, SUN Jing-hua. Development of Precision Optical Comb Ranging[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2022, 20(4): 112
Category:
Received: Dec. 13, 2021
Accepted: --
Published Online: Oct. 29, 2022
The Author Email:
CSTR:32186.14.