Spectroscopy and Spectral Analysis, Volume. 41, Issue 7, 1998(2021)

Application Progress of Artificial Neural Network in Laser-Induced Breakdown Spectral Data Analysis

Wen-ya ZHAO1、*, Hong MIN2、2;, Shu LIU2、2; *;, Ya-rui AN1、1; *;, and Jin YU3、3;
Author Affiliations
  • 11. College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 22. Technical Center for Industrial Product and Raw Material Inspection and Testing, Shanghai Customs, Shanghai 200135, China
  • 33. School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    Figures & Tables(6)
    The composition of LIBS instrument[8]
    Typical flow chart for processing mineral LIBS spectral data[13]
    Fs-LIBS combined with ANN flow chart for plastic classification[27]
    Flow chart of LIBS data analysis for identifying biomass pellets[37]
    • Table 1. The typical study on the analysis of alloying elements by LIBS technique combined with ANN model

      View table
      View in Article

      Table 1. The typical study on the analysis of alloying elements by LIBS technique combined with ANN model

      合金类型元素ANN模型主要成果参考文献
      碳钢C(Ⅰ) 247.86 nmGA-BPANN克服相邻铁谱线干扰[20]
      碳钢; 低合金钢;
      微合金钢
      Cu; VGA-ANNGA用于选取样本目标元素的特征谱线强度比, 提高了ANN分析精度[21]
      碳钢; 低合金钢;
      微合金钢
      Cr; Ni基于ANN的多谱线
      校正(MSLC)
      用目标和基体元素的多谱线强度比训练神经网络识别等离子体脉冲的变化, 克服了激发条件不稳定的问题和自吸收效应[22]
      铜镍二元合金NiBPANN训练ANN识别谱线强度与等离子体参数之间的基本物理关系, 克服了激光波动和基体效应[23]
      青铜标样Cu (324.75 nm; 327.39 nm)
      Sn (303.41 nm; 326.23 nm)
      ELM-SVR以ELM的输出为支持向量回归(SVR)输入的混合模型, 解决ELM模型的超参数过拟合的问题, 提高了定量分析的准确度[24]
    • Table 2. Typical studies of LIBS technology combined with ANN model to detect soil metal content

      View table
      View in Article

      Table 2. Typical studies of LIBS technology combined with ANN model to detect soil metal content

      元素ANN模型输入变量主要成果参考文献
      KCNN主成分和延迟时间确定的时间分辨LIBS数据矩阵RV=0.996 8; RMSEV=0.078 5[32]
      CdBPANN分析谱线与谱线区间: (356. 29~346. 93 nm)RC=0.999 9; RP=0.981 5[33]
      Pb, CdBPANN分析谱线与谱线区间: (346. 29~346. 93 nm);
      (405.43~406.17 nm)
      RP=0.995 3; RMSEP=0.145 2
      AgBPANN数据最后一列加入一项带有土壤类型的数据, 组成广义光谱RV=0.999 9; ppm量级[34]
    Tools

    Get Citation

    Copy Citation Text

    Wen-ya ZHAO, Hong MIN, Shu LIU, Ya-rui AN, Jin YU. Application Progress of Artificial Neural Network in Laser-Induced Breakdown Spectral Data Analysis[J]. Spectroscopy and Spectral Analysis, 2021, 41(7): 1998

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jul. 15, 2020

    Accepted: --

    Published Online: Sep. 8, 2021

    The Author Email: ZHAO Wen-ya (182692066@st.usst.edu.cn)

    DOI:10.3964/j.issn.1000-0593(2021)07-1998-07

    Topics