Infrared and Laser Engineering, Volume. 50, Issue 9, 20210094(2021)

Anomaly detection based on deep support vector data description under surveillance scenarios

Fangli Li
Author Affiliations
  • School of Information Engineering, Jiangxi University of Technology, Nanchang 330098, China
  • show less
    References(27)

    [1] Luo W, Liu W, Lian D, et al. Video anomaly detection with sparse coding inspired deep neural networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 1-15(2019).

    [2] Nayak R, Pati U C, Das S K. A comprehensive review on deep learning-based methods for video anomaly detection[J]. Image and Vision Computing, 106, 104078(2020).

    [3] Cosar S, Donatiello G, Bogorny V, et al. Toward abnormal trajectory and event detection in video surveillance[J]. IEEE Transactions on Circuits and Systems for Video Technology, 27, 683-695(2016).

    [4] Xu K, Jiang X, Sun T. Anomaly detection based on stacked sparse coding with intraframe classification strategy[J]. IEEE Transactions on Multimedia, 20, 1062-1074(2018).

    [5] [5] Cheng K W, Chen Y T, Fang W H. Video anomaly detection localization using hierarchical feature representation gaussian process regression[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2015: 29092917.

    [6] Leyva R, Sanchez V, Li C T. Video anomaly detection with compact feature sets for online performance[J]. IEEE Transactions on Image Processing, 26, 3463-3478(2017).

    [7] Huang Lehong, Cao Lihua, Li Ning, et al. A state perception method for infrared dim and small targets with deep learning[J]. Chinese Optics, 13, 527-536(2020).

    [8] Xu D, Yan Y, Ricci E, Sebe N. Detecting anomalous events in videos by learning deep representations of appearance and motion[J]. Computer Vision and Image Understanding, 156, 117-127(2017).

    [9] [9] Lu C, Shi J, Jia J. Abnmal event detection at 150 FPS in MATLAB[C]Proceedings of IEEE International Conference on Computer Vision, 2013: 27202727.

    [10] Weixin L, Mahadevan V, Vasconcelos N. Anomaly detection and localization in crowded scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36, 18-32(2014).

    [11] Zhou Hongqiang, Huang Lingling, Wang Yongtian. Deep learning algorithm and its application in optics[J]. Infrared and Laser Engineering, 48, 1226004(2019).

    [12] [12] Ravanbakhsh M, Nabi M, Mousavi H, et al. Plugplay CNN f crowd motion analysis: An application in abnmal event detection[C]IEEE Winter Conference on Applications of Computer Vision, 2018: 16891698.

    [13] Zhang Xiaorong, Hu Bingliang, Pan Zhibing, et al. Tensor representation based target detection for hyperspectral imagery[J]. Optical and Precision Engeering, 27, 488-498(2019).

    [14] Zhang Dongge, Fu Yutian. One class support vector machine used for blind pixel detection[J]. Infrared and Laser Engineering, 47, 0404001(2018).

    [15] [15] Hasan M, Choi J, Neumanny J, et al. Learning tempal regularity in video sequences[C]Proceedings of IEEE Conference on Computer Vision Pattern Recognition, 2016: 770778.

    [16] [16] Ramachra B, Jones M J, Vatsavai R R. Learning a distance function with a Siamese wk to localize anomalies in videos[C]The IEEE Winter Conference on Applications of Computer Vision, 2020: 25982607.

    [17] [17] Ravanbakhsh M, Nabi M, Mousavi H, et al. Abnmal event detection in videos using generative adversarial s[C]IEEE International Conference on Image Processing, 2017.

    [18] Li Angze, Wang Xianshuang, Xu Xiangjun, et al. Fast classification of tobacco based on laser-induced breakdown spectroscopy[J]. Chinese Optics, 12, 1139-1146(2019).

    [19] Yu Liandong, Chang Yaqi, Zhao Huining, et al. Method for improving positioning accuracy of robot based on support vector regression[J]. Optics and Precision Engineering, 28, 2646-2654(2020).

    [20] [20] Luo W, Liu W, Gao S. A revisit of sparse coding based anomaly detection in stacked rnn framewk[C]Proceedings of the IEEE International Conference on Computer Vision, 2017: 341–349.

    [21] [21] Ruff L, Vermulen R A, Gnitz N, et al. Deep oneclass classification[C]Proceedings of the 35 th International Conference on Machine Learning, 2018.

    [22] [22] Ionescu R T, Smeureanu S, Alexe B, et al. Unmasking the abnmal events in video[C]Proceedings of the IEEE International Conference on Computer Vision, 2017: 2895–2903.

    [23] [23] Teed Z, Deng J. RAFT: Recurrent all pairs field transfms f optical flow[C]European Conference on Computer Vision, 2020: 402419.

    [24] [24] Abati D, Prello A, Calderara S, et al. Latent space autegression f novelty detection[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2019: 481490.

    [25] [25] Ionescu R T, Khen, Geogrescu M I, et al. Objectcentric autoencoders dummy anomalies f abnmal event detection in video[C]IEEE Conference on Computer Vision Pattern Recognition, 2019: 78427851.

    [26] [26] Mais R, Le V, Tran T, et al. Learning regularity in skeleton trajecties f anomaly detection in videos[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2019: 1199612004.

    [27] [27] Liu W, Luo W, Lian D, et al. Future frame prediction f anomaly detection–a new baseline[C]IEEE Conference on Computer Vision Pattern Recognition, 2018: 65366545.

    Tools

    Get Citation

    Copy Citation Text

    Fangli Li. Anomaly detection based on deep support vector data description under surveillance scenarios[J]. Infrared and Laser Engineering, 2021, 50(9): 20210094

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image processing

    Received: Feb. 8, 2021

    Accepted: --

    Published Online: Oct. 28, 2021

    The Author Email:

    DOI:10.3788/IRLA20210094

    Topics