Infrared and Laser Engineering, Volume. 50, Issue 10, 20200489(2021)

Influence of indium composition of n waveguide layer on photoelectric performance of GaN-based green laser diode

Tiantian Jia1, Hailiang Dong1, Zhigang Jia1, Aiqin Zhang2, Jian Liang3, and Bingshe Xu1,4
Author Affiliations
  • 1Key Laboratory of Interface Science and Engineering in Advanced Materials Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
  • 2College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China
  • 3College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
  • 4Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi’an 710021, China
  • show less
    References(25)

    [1] Liu Y, Liu Y, Xiao H D, et al. 638 nm narrow linewidth diode laser with a grating external cavity[J]. Chinese Optics, 13, 1249-1256(2020).

    [2] Cao Y X, Shu S L, Sun F Y, et al. Development of beam combining technology in mid-infrared semiconductor lasers (Invited)[J]. Infrared and Laser Engineering, 47, 1003002(2018).

    [3] Qiu B C, Hu H, Wang W M, et al. Design and fabrication of 12 W high power and high reliability 915 nm semiconductor lasers[J]. Chinese Optics, 11, 590-603(2018).

    [4] Xu H W, Ning Y Q, Zeng Y G, et al. Design and epitaxial growth of quantum-well for 852 nm laser diode[J]. Optics and Precision Engineering, 21, 590-597(2013).

    [5] Yang B H, Cai Y D, Wen Z X, et al. Automatic compensation method for beam drift in long-distance laser measurement[J]. Optics and Precision Engineering, 28, 2393-2402(2020).

    [6] Lan T, Zhou G Z, Li Y, et al. Mitigation of efficiency droop in an asymmetric GaN-based high-power laser diode with sandwiched GaN/InAlN/GaN lower quantum barrier[J]. IEEE Photonics Journal, 10, 1-8(2018).

    [7] Zhao D M, Zhao D G. Analysis of the growth of GaN epitaxy on silicon[J]. Journal of Semiconductors, 39, 033006(2018).

    [8] Tian A Q, Hu L, Zhang L Q, et al. Design and growth of GaN-based blue and green laser diodes[J]. Science China Materials, 63, 1348-1363(2020).

    [9] Lermer T, Schillgalies M, Breidenassel A, et al. Waveguide design of green InGaN laser diodes[J]. Physica Status Solidi, 207, 1328-1331(2010).

    [10] Zhang Y, Xu P. Research progress of GaN-based lasers[J]. Nonferrous Metal Materials and Engineering, 41, 54-60(2020).

    [11] Zhang L Q, Jiang D S, Zhu J J, et al. Confinement factor and absorption loss of AlInGaN based laser diodes emitting from ultraviolet to green[J]. Journal of Applied Physics, 105, 023104(2009).

    [12] Feng M X, Sun Q, Liu J P, et al. Al-free cladding-layer blue laser diodes with a low aspect ratio in far-field beam pattern[J]. Journal of Semiconductors, 39, 61-65(2018).

    [13] Liang F, Zhao D G, Jiang D S, et al. Influence of optical field distribution on GaN-based green laser diodes[J]. Chinese Journal of Lasers, 47, 0701018(2020).

    [14] Muziol G, Turski H, Siekacz M, et al. Elimination of leakage of optical modes to GaN substrate in nitride laser diodes using a thick InGaN waveguide[J]. Applied Physics Express, 9, 092103(2016).

    [15] Liang F, Zhao D G, Jiang D P, et al. Suppression of optical field leakage in GaN-based green laser diode using graded-indium n-InxGa1-xN lower waveguide[J]. Superlattices and Microstructures, 132, 106153(2019).

    [16] Tang F Z, Zhu T T, Fu W Y, et al. Insight into the impact of atomic- and nano-scale indium distributions on the optical properties of InGaN/GaN quantum well structures grown on m-plane freestanding GaN substrates[J]. Journal of Applied Physics, 125, 225704(2019).

    [17] [17] Kawaguchi M, Imafuji O, Nozaki S, et al. Opticalloss suppressed InGaN laser diodes using undoped thick waveguide structure[C]Conference on Gallium Nitride Materials Devices XI, 2016, 9748: 974818.

    [18] [18] Erbert G, Bugge F, Knigge A, et al. Highly reliable 75W InGaAsAlGaAs laser bars with over 70% conversion efficiency [C]Proceedings of SPIE–The International Society f Optical Engineering, 2007, 6133: 61330B.

    [19] Liang F, Zhao D P, Jiang D S, et al. New design of upper waveguide with unintentionally doped InGaN layer for InGaN-based laser diode[J]. Optics & Laser Technology, 97, 284-289(2017).

    [20] Jong-In S, Hyungsung K, Dong-Soo S, et al. An explanation of efficiency droop in InGaN-based light emitting diodes: saturated radiative recombination rate at randomly distributed In-rich active areas[J]. Journal- Korean Physical Society, 58, 503-508(2011).

    [21] Dong H L, Jia T T, Liang J, et al. Improved carrier transport and photoelectric properties of InGaN/GaN multiple quantum wells with wider well and narrower barrier[J]. Optics & Laser Technology, 129, 106309(2020).

    [22] David, A, Grundmann M J, Kaeding J F, et al. Carrier distribution in (0001) InGaN∕GaN multiple quantum well light-emitting diodes[J]. Applied Physics Letters, 92, 053502(2008).

    [23] Chong F, Wang J, Xiong C, et al. An asymmetric broad waveguide structure for a 0.98-μm high-conversion-efficiency diode laser[J]. Journal of Semiconductors, 30, 64-67(2009).

    [24] Bour D P, Rosen A. Optimum cavity length for high conversion efficiency quantum well diode lasers[J]. Journal of Applied Physics, 66, 2813-2818(1989).

    [25] Xu Z W, Qu Y, Wang Y Z, et al. Simulation analysis of high power asymmetric 980 nm broad-waveguide diode lasers[J]. Infrared and Laser Engineering, 43, 1094-1098(2014).

    Tools

    Get Citation

    Copy Citation Text

    Tiantian Jia, Hailiang Dong, Zhigang Jia, Aiqin Zhang, Jian Liang, Bingshe Xu. Influence of indium composition of n waveguide layer on photoelectric performance of GaN-based green laser diode[J]. Infrared and Laser Engineering, 2021, 50(10): 20200489

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers & Laser optics

    Received: Nov. 18, 2020

    Accepted: --

    Published Online: Dec. 7, 2021

    The Author Email:

    DOI:10.3788/IRLA20200489

    Topics