Infrared Technology, Volume. 47, Issue 4, 468(2025)
Multimodal Object Detection Based on Feature Interaction and Adaptive Grouping Fusion
[2] [2] KANG J, Tariq S, Oh H, et al. A survey of deep learning-based object detection methods and datasets for overhead imagery[J].IEEE Access, 2022,10: 20118-20134.
[4] [4] JIAO L, ZHANG F, LIU F, et al. A survey of deep learning-based object detection[J].IEEE Access, 2019,7: 128837-128868.
[6] [6] YAO X, ZHAO S, XU P, et al. Multi-source domain adaptation for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 3273-3282.
[8] [8] LI H, WU X J, Kittler J. RFN-Nest: an end-to-end residual fusion network for infrared and visible images[J].Information Fusion, 2021,73: 72-86.
[9] [9] YANG Y, LIU J, HUANG S, et al. Infrared and visible image fusion via texture conditional generative adversarial network[J].IEEE Transactions on Circuits and Systems for Video Technology, 2021,31(12): 4771-4783.
[10] [10] WU J, SHEN T, WANG Q, et al. Local adaptive illumination-driven input-level fusion for infrared and visible object detection[J].Remote Sensing, 2023,15(3): 660.
[14] [14] BAO C, CAO J, HAO Q, et al. Dual-YOLO architecture from infrared and visible images for object detection[J].Sensors, 2023,23(6): 2934.
[15] [15] CUI C, GAO T, WEI S, et al. PP-LCNet: a lightweight CPU convolutional neural network[J]. arXiv preprint arXiv, 2021: 2109.15099.
[16] [16] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//2020IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11534-11542.
[17] [17] Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision, 2018: 3-19.
Get Citation
Copy Citation Text
YE Zhihui, WU Jian, ZHAO Xiaozhong, WANG Wenjuan, SHAO Xinguang. Multimodal Object Detection Based on Feature Interaction and Adaptive Grouping Fusion[J]. Infrared Technology, 2025, 47(4): 468