INFRARED, Volume. 46, Issue 1, 35(2025)
Study on Broadband Terahertz EIT-Like Effect Based on Flexible Metamaterials
[1] [1] Schalch J S, Chi Y, He Y, et al. Broadband electrically tunable VO2-metamaterial terahertz switch with suppressed reflectionv[J]. Microwave and Optical Technology Letters, 2020, 62(8): 2782-2790.
[2] [2] Zhai Z H, Zhu H F, Shi Q, et al. Enhanced photo responses of an optically driven VO2-based terahertz wave modulator near percolation threshold[J]. Appl Phys Lett, 2018, 113(23): 1104.
[3] [3] Ferraro A, Caputo R, Beccherelli R, et al. Angle-resolved and polarization-dependent investigation of cross-shaped frequency-selective surface terahertz filters[J]. Appl Phys Lett, 2017, 110(14): 1107.
[4] [4] Wu C, Fang Y, Luo L, et al. A dynamically tunable and wide-angle terahertz absorber based on graphene-dielectric grating[J]. Mod Phys Lett B, 2020, 34(27): 2050292.
[5] [5] Zubair A, Tsentalovich D E, Young C C, et al. Carbon nanotube fiber terahertz polarizer[J]. Appl Phys Lett, 2016, 108(14): 1107.
[6] [6] Yang Y, Yu X, Pitchappa P, et al. Terahertz topological photonics for on-chip communication[J]. Nat Photonics, 2020, 14: 446-451.
[7] [7] Huang C, Zhang C, Xiao S, et al. Ultrafast control of vortex microlasers[J]. Science, 2020, 367(6481): 1018-1021.
[8] [8] Souza J A, Cabral L, Oliveira R R, et al. Electromagnetically-induced-transparency-related phenomena and their mechanical analogs[J]. Physical Review A, 2015, 92(2): 023818.
[9] [9] Qu Z, Xu Y, Zhang B, et al. Terahertz dual-band polarization insensitive electromagnetically induced transparency-like metamaterials[J]. Plasmonics, 2020, 15(1): 301-308.
[10] [10] Zheng X, Zhao Z, Shi W, et al. Broadband terahertz plasmon-induced transparency via asymmetric coupling inside meta-molecules[J]. Opt Mater Express, 2017, 7(3): 1035-1047.
[11] [11] Liu Y, Du Y, Liu W, et al. Tunable plasmon-induced transparency with ultra-broadband in Dirac semimetal metamaterials[J]. Plasmonics, 2019, 14(6): 1717-1723.
[12] [12] Qiu Y, Wang J, Lang T, et al. Broadband terahertz metamaterial absorber: design and fabrication[J]. Applied Optics, 2021, 60(32): 10055-10061.
[13] [13] Zeng L, Zhang H F. Design of broadband plasmon-induced transparency hybrid metamaterial based on the interaction of the metal and dielectric resonances[J]. Annalen der Physik, 2022, 534(4): 2100462.
[14] [14] Jiang L, Yuan C, Li Z, et al. Multi-band and high-sensitivity perfect absorber based on monolayer graphene metamaterial[J]. Diamond and Related Materials, 2021, 111: 108227.
[15] [15] Xu H, He Z, Chen Z, et al. Optical Fermi level-tuned plasmonic coupling in a grating-assisted graphene nanoribbon system[J]. Opt Express, 2020, 28: 25767-25777.
[16] [16] He Z, Cui W, Ren X, et al. Ultra-high sensitivity sensing based on tunable plasmon-induced transparency in graphene metamaterials in terahertz[J]. Optical Materials, 2020, 108: 110221.
[17] [17] Chen J, Jang C, Xiao S, et al. Intrinsic and extrinsic performance limits of graphene devices on SiO2[J]. Nat Nanotechnol, 2008, 3(4): 206-209.
[18] [18] He Z, Li C, Cui W, et al. Dual-Fano resonances and sensing properties in the crossed ring-shaped meta-surface[J]. Results in Physics, 2020, 16: 103140.
[19] [19] He X, Lin F, Liu F, et al. Tunable strontium titanate terahertz all-dielectric metamaterials[J]. Journal of Physics D: Applied Physics, 2020, 53(15): 155105.
[20] [20] He X, Liu F, Lin F, et al. Tunable 3D Dirac-semimetals supported mid-IR hybrid plasmonic waveguides[J]. Optics Letters, 2021, 46(3): 472-475.
[21] [21] Xu H, Li H, He Z, et al. Dual tunable plasmon-induced transparency based on silicon-air grating coupled graphene structure in terahertz metamaterial[J]. Optics Express 2017, 25(17): 20780-20790.
[22] [22] Jin X R, Jinwoo P, Zheng H Y. Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling[J]. Optics Express, 2011, 19(22): 21652-21657.
[23] [23] Walia S, Shah C M, Gutruf P, et al. Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro-and nano-scales[J]. Applied Physics Reviews, 2015, 2(1): 011303.
[25] [25] Alves F, Kearney B, Grbovic D, et al. Strong terahertz absorption using SiO2/Al based metamaterial structures[J]. Applied Physics Letters, 2012, 100(11): 111104.
[26] [26] Hofmann T, Schmidt D, Boosalis A, et al. THz dielectric anisotropy of metal slanted columnar thin films[J]. Applied Physics Letters, 2011, 99(8): 081903.
[29] [29] Bao H, Nielsen K, Bang O, et al. Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding[J]. Scientific Reports, 2015, 5(1): 7620.
[30] [30] Manjippa M, Chiam S Y, Cong L, et al. Tailoring the slow light behavior in terahertz meta-surfaces[J]. Applied Physics Letters, 2015, 106(18): 181101.
[31] [31] Chen M M, Xiao Z Y, Lu X J, et al. Simulation of dynamically tunable and switch able electromagnetically induced transparency analogue based on metal-graphene hybrid metamaterial[J]. Carbon, 2020, 159(20): 273.
[32] [32] Li F, Mao M, Zhang T, et al. Reconfigurable electromagnetically induced transparency metamaterial simultaneously coupled with the incident electric and magnetic fields[J]. Journal of the Optical Society of America B, 2021, 38(3): 858-865.
[33] [33] Boggild P, Mackenzie D M A, Whelan P R, et al. Mapping the electrical properties of large-area graphene[J]. 2D Materials, 2017, 4(4): 042003.
[34] [34] Ma C W, Ma W Y, Tan Y, et al. High Q-factor terahertz metamaterial based on analog of electromagnetically induced transparency and its sensing characteristics[J]. Opto-Electronic Engineering, 2018, 45(11): 180298.
[35] [35] Pan W, Yan Y J, Shen D J. Performance analysis of terahertz metamaterial sensor based on electromagnetically induced transparency[J]. Infrared Technology, 2018, 40(7): 707-711.
[36] [36] Singh R, Cao W, Al-Naib I, et al. Ultrasensitive terahertz sensing with high-Q Fano resonances in meta-surfaces[J]. Applied Physics Letters, 2014, 105(17): 171101.
Get Citation
Copy Citation Text
HU Hui, MA Cheng-ju, WU Ji-rui, LI Ting-yu, GONG Xin, WANG Yue-chen. Study on Broadband Terahertz EIT-Like Effect Based on Flexible Metamaterials[J]. INFRARED, 2025, 46(1): 35
Category:
Received: Sep. 10, 2024
Accepted: Feb. 18, 2025
Published Online: Feb. 18, 2025
The Author Email: Cheng-ju MA (chengjuma@syu.edu.cn)