Laser & Optoelectronics Progress, Volume. 56, Issue 23, 231008(2019)

Object Detection Algorithm Based on Improved Feature Extraction Network

Ting Qiao, Hansong Su, Gaohua Liu*, and Meng Wang
Author Affiliations
  • School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
  • show less
    Figures & Tables(12)
    Comparison of effects of four data augmentation techniques
    Comparison of combination effects of flipping, cropping, and rotating methods
    Node representations of cell structures of ResNet, DensNet, and two-path networks. (a) ResNet network; (b) DensNet network; (c) two-path network
    Examples of traditional NMS problems. (a) Horses; (b) birds
    Trend of parameter quantity of feature extraction network with Top-1 error rate and 52, 100, and 133 layers
    Trend of parameter quantity of feature extraction network with Top-1 error rate and network growth rates of 12, 18, 24, and 48
    • Table 1. Structure of feature extraction network

      View table

      Table 1. Structure of feature extraction network

      LayerOutput sizeDetail
      Conv1112×1127×7,64,stride 2
      Conv256×563×3 max pool,stride 21×1conv3×3conv1×1conv×α1
      Conv328×281×1conv3×3conv1×1conv×α2
      Conv414×141×1conv3×3conv1×1conv×α3
      Conv57×71×1conv3×3conv1×1conv×α4
    • Table 2. Comparison of complexity of different feature extraction networks

      View table

      Table 2. Comparison of complexity of different feature extraction networks

      Feature extraction networkDepthParameter /106
      VGG-1616168
      DensNet(K=48)161111
      ResNet101150
      Ours(α1α2α3α4=6,8,16,3; K=48)100134
    • Table 3. Influences of IoU threshold, β parameter, and weighted average on AP (0.5, 0.6, and 0.7 represent different IoU thresholds; w represents weighted average)

      View table

      Table 3. Influences of IoU threshold, β parameter, and weighted average on AP (0.5, 0.6, and 0.7 represent different IoU thresholds; w represents weighted average)

      Different parameterAP0.5AP0.5wAP0.6AP0.6wAP0.7AP0.7w
      Normal NMS44.3744.8339.1839.6729.8330.34
      β=2.5, σ=0.446.4246.9242.8343.4034.6835.24
      β=1.67, σ=0.646.5847.1143.3043.7935.2135.76
      β=1.25, σ=0.845.9346.4541.6842.2133.0133.53
    • Table 4. Influences of data augmentation and improved NMS mechanism on accuracy

      View table

      Table 4. Influences of data augmentation and improved NMS mechanism on accuracy

      Detection framworkBackboneTraining setTesting setmAP /%
      OursNo augmentation No improved NMSProposedProposedProposedVOC2007+VOC2012VOC2007+VOC2012VOC2007+VOC2012VOC2007VOC2007VOC200779.176.678.0
    • Table 5. Influences of different epochs on accuracy

      View table

      Table 5. Influences of different epochs on accuracy

      Nums of epochLearning rate settingmAP /%
      0No warming up78.20
      20.01, 0.178.25
      3450.001, 0.01, 0.10.0001, 0.001, 0.01, 0.10.00001, 0.0001, 0.001, 0.01, 0.178.3678.6778.71
    • Table 6. Testing results of different algorithms under VOC2007+VOC2012 training sets

      View table

      Table 6. Testing results of different algorithms under VOC2007+VOC2012 training sets

      MethodBackboneTraining setTesting setmAP/%Frame rate /(frame·s-1)
      TwostageFast R-CNNFaster R-CNNFaster R-CNNMR-CNNIONOursVGG-16VGG-16ResNet-101ResNet-101VGG-16ProposedVOC2007+VOC2012VOC2007+VOC2012VOC2007+VOC2012VOC2007+VOC2012VOC2007+VOC2012VOC2007+VOC2012VOC2007VOC2007VOC2007VOC2007VOC2007VOC200770.073.276.478.276.579.10.5072.400.031.252.10
      OnestageYOLOYOLOv2SSD321SSD300*DSOD300DSSD513GoogleNetDarknet-19ResNet-101VGG-16DS/64-192-48-1ResNet-101VOC2007+VOC2012VOC2007+VOC2012VOC2007+VOC2012VOC2007+VOC2012VOC2007+VOC2012VOC2007+VOC2012VOC2007VOC2007VOC2007VOC2007VOC2007VOC200763.478.677.177.277.781.5454011.204617.405.50
    Tools

    Get Citation

    Copy Citation Text

    Ting Qiao, Hansong Su, Gaohua Liu, Meng Wang. Object Detection Algorithm Based on Improved Feature Extraction Network[J]. Laser & Optoelectronics Progress, 2019, 56(23): 231008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Apr. 26, 2019

    Accepted: Jun. 3, 2019

    Published Online: Nov. 27, 2019

    The Author Email: Gaohua Liu (suppig@126.com)

    DOI:10.3788/LOP56.231008

    Topics