Laser & Optoelectronics Progress, Volume. 60, Issue 2, 0215001(2023)

Underwater Object Detection Algorithm Based on Improved CenterNet

Rongrong Wang1 and Zhongyun Jiang2、*
Author Affiliations
  • 1College of Information, Shanghai Ocean University, Shanghai 201306, China
  • 2College of Information Technology, Shanghai Jian Qiao University, Shanghai 201306, China
  • show less
    Figures & Tables(15)
    Model structure. (a) HRNet; (b) BAM; (c) FFM; (d) detection module
    HRNet structure
    BAM structure
    Feature fusion model
    RFB model
    Example images. (a) Scallop; (b) holothurian; (c) starfish; (d) echinus
    Sample distribution
    Comparison of detection results of different networks. (a) (c) (e) (g) CenterNet algorithm; (b) (d) (f) (h) proposed algorithm
    Detection accuracy of different categories
    • Table 1. Backbone network structure parameters

      View table

      Table 1. Backbone network structure parameters

      NetStage 1Stage 2Stage 3Stage 4Resolution
      Subnet_11×1,643×3,641×1,256×4×13×3,323×3,32×4×13×3,323×3,32×4×43×3,323×3,32×4×3
      Subnet_23×3,643×3,64×4×13×3,643×3,64×4×43×3,643×3,64×4×3
      Subnet_33×3,1283×3,128×4×43×3,1283×3,128×4×316×
      Subnet_43×3,2563×3,256×4×332×
    • Table 2. PASCAL VOC dataset test results

      View table

      Table 2. PASCAL VOC dataset test results

      AlgorithmBacbone neworkSizeGPUmAP /%FPS
      Fast R-CNNVGG-16~1000×600Tian X70.00.5
      Reference [21ResNet-50RTX 2080Ti72.6
      Faster R-CNNResNet-101~1000×600Tian X76.45.0
      SSD300VGG-16300×300Tian X77.145
      SSDVGG-16320×320Tian X77.511.2
      YOLOv3Darknet-53554×554Tian X79.326.0
      RetinaNetResNet-101~1000×600RTX2080 S75.38.8
      Proposed algorithmFA-HRNet384×384RTX2080 S78.17.0
      FA-HRNet512×512RTX2080 S79.56.7
    • Table 3. Comparison of detection accuracy and speed with CenterNet algorithm

      View table

      Table 3. Comparison of detection accuracy and speed with CenterNet algorithm

      AlgorithmNetScallop /%Holothurian /%Starfish /%Echinus /%mAP /%FPS
      CenterNetHourglass-10457.471.886.088.575.95.2
      Proposed algorithmFA-HRNet60.273.385.689.777.47.0
    • Table 4. Comparison of model complexity with CenterNet algorithm

      View table

      Table 4. Comparison of model complexity with CenterNet algorithm

      AlgorithmNetIpout sizeSize /MBParams /MBGFLOPs /109
      CenterNetHourglass-104384×384765.7191.2164.5
      Proposed algorithmFA-HRNet384×384123.030.432.6
    • Table 5. Performance comparison with mainstream object detection algorithms

      View table

      Table 5. Performance comparison with mainstream object detection algorithms

      AlgorithmBacbone neworkSize /MBParams /MBGFLOPs /109mAP /%FPS
      Faster R-CNNResNet-101+FPN552.859.591.873.73.5
      Reference [22ResNet-5072.6
      SSDVGG-1692.6124.230.668.616.0
      YOLOv3Darknet-53246.561.532.873.315.0
      RetinaNetResNet-101228.555.2100.672.28.8
      CornerNetHourglass-104804.6201.0453.049.03.1
      ExtremeNetHourglass-104794.1198.3229.953.52.3
      CenterNetHourglass-104765.7191.2164.575.95.2
      Proposed algorithmFA-HRNet123.030.432.677.47.0
    • Table 6. Influence of different modules on detection performance

      View table

      Table 6. Influence of different modules on detection performance

      No.HRNetBAMFFMSize /MBParams /MBGFLOPs /109mAP /%FPS
      1765.7191.24164.5375.95.2
      2115.228.6724.1674.78.2
      3115.628.7424.1776.27.9
      4123.030.3632.5577.47.0
    Tools

    Get Citation

    Copy Citation Text

    Rongrong Wang, Zhongyun Jiang. Underwater Object Detection Algorithm Based on Improved CenterNet[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0215001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Aug. 12, 2021

    Accepted: Nov. 8, 2021

    Published Online: Jan. 6, 2023

    The Author Email: Zhongyun Jiang (jianqiao_jzy@163.com)

    DOI:10.3788/LOP212230

    Topics