Acta Optica Sinica, Volume. 43, Issue 14, 1415001(2023)
Monocular Depth Estimation Method Based on Plane Coefficient Representation with Adaptive Depth Distribution
[1] Han X F, Laga H, Bennamoun M. Image-based 3D object reconstruction: state-of-the-art and trends in the deep learning era[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 1578-1604(2021).
[2] Rasouli A, Tsotsos J K. Autonomous vehicles that interact with pedestrians: a survey of theory and practice[J]. IEEE Transactions on Intelligent Transportation Systems, 21, 900-918(2019).
[3] Hussain R, Zeadally S. Autonomous cars: research results, issues, and future challenges[J]. IEEE Communications Surveys & Tutorials, 21, 1275-1313(2019).
[4] Ding M, Jiang X Y. Scene depth estimation based on monocular vision in advanced driving assistance system[J]. Acta Optica Sinica, 40, 1715001(2020).
[5] Beever L, John N W. LevelEd SR: a substitutional reality level design workflow[C], 130-138(2022).
[6] Sun K, Xiao B, Liu D et al. Deep high-resolution representation learning for human pose estimation[C], 5686-5696(2020).
[7] Hu H, Gu J Y, Zhang Z et al. Relation networks for object detection[C], 3588-3597(2018).
[8] He A F, Luo C, Tian X M et al. A twofold Siamese network for real-time object tracking[C], 4834-4843(2018).
[9] Liu J T, Zhang Y P, Yang Y W. Efficient monocular image depth estimation based on transfer learning[J]. Laser & Optoelectronics Progress, 59, 1611002(2022).
[10] Zhang W D, Zhang W, Zhang Y D. GeoLayout: geometry driven room layout estimation based on depth maps of planes[M]. Vedaldi A, Bischof H, Brox T, et al. Computer vision-ECCV 2020. Lecture notes in computer science, 12361, 632-648(2020).
[11] Jun J, Lee J H, Lee C et al. Depth map decomposition for monocular depth estimation[M]. Computer vision-ECCV 2022. Lecture notes in computer science, 13662, 18-34(2022).
[13] Eigen D, Puhrsch C, Fergus R. Depth map prediction from a single image using a multi-scale deep network[C], 2366-2374(2014).
[14] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).
[15] Huang G, Liu Z, Van Der Maaten L et al. Densely connected convolutional networks[C], 2261-2269(2017).
[16] Vaswani A, Shazeer N, Parmar N et al. Attention is all you need[C], 6000-6010(2017).
[17] Chen L C, Papandreou G, Kokkinos I et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 834-848(2018).
[19] Yang H T, Lei L, Lin Y C. Binocular depth estimation algorithm based on multi-scale attention feature fusion[J]. Laser & Optoelectronics Progress, 59, 1815005(2022).
[20] Godard C, Mac Aodha O, Firman M et al. Digging into self-supervised monocular depth estimation[C], 3827-3837(2020).
[21] Watson J, Mac Aodha O, Prisacariu V et al. The temporal opportunist: self-supervised multi-frame monocular depth[C], 1164-1174(2021).
[22] Song C Q, Niu M L, Liu Z P et al. Spatial-temporal 3D dependency matching with self-supervised deep learning for monocular visual sensing[J]. Neurocomputing, 481, 11-21(2022).
[23] Zhou T H, Brown M, Snavely N et al. Unsupervised learning of depth and ego-motion from video[C], 6612-6619(2017).
[24] Bian J W, Zhan H Y, Wang N Y et al. Auto-rectify network for unsupervised indoor depth estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 9802-9813(2022).
[25] Hui T W. RM-depth: unsupervised learning of recurrent monocular depth in dynamic scenes[C], 1665-1674(2022).
[26] Zhu S J, Brazil G, Liu X M. The edge of depth: explicit constraints between segmentation and depth[C], 13113-13122(2020).
[27] Eigen D, Fergus R. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture[C], 2650-2658(2016).
[28] Yin W, Liu Y F, Shen C H et al. Enforcing geometric constraints of virtual normal for depth prediction[C], 5683-5692(2020).
[29] Patil V, Sakaridis C, Liniger A et al. P3Depth: monocular depth estimation with a piecewise planarity prior[C], 1600-1611(2022).
[30] Xie S N, Girshick R, Dollár P et al. Aggregated residual transformations for deep neural networks[C], 5987-5995(2017).
[31] Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C], 448-456(2015).
[32] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[M]. Navab N, Hornegger J, Wells W M, et al. Medical image computing and computer-assisted intervention-MICCAI 2015. Lecture notes in computer science, 9351, 234-241(2015).
[33] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C], 7132-7141(2018).
[34] Wu T, Pan L, Zhang J et al. Balanced chamfer distance as a comprehensive metric for point cloud completion[J]. Advances in Neural Information Processing Systems, 34, 29088-29100(2021).
[35] Silberman N, Hoiem D, Kohli P et al. Indoor segmentation and support inference from RGBD images[M]. Fitzgibbon A, Lazebnik S, Perona P, et al. Computer vision-ECCV 2012. Lecture notes in computer science, 7576, 746-760(2012).
[36] Newcombe R A, Izadi S, Hilliges O et al. KinectFusion: Real-time dense surface mapping and tracking[C], 127-136(2012).
[37] Levin A, Lischinski D, Weiss Y. Colorization using optimization[C], 689-694(2004).
[38] Deng J, Dong W, Socher R et al. ImageNet: a large-scale hierarchical image database[C], 248-255(2009).
[39] Sha H, Liu Y, Wang Y T et al. Monocular indoor depth estimation method based on neural networks with constraints on two-dimensional images and three-dimensional geometry[J]. Acta Optica Sinica, 42, 1911001(2022).
[40] Yu J H, Jiang Y N, Wang Z Y et al. UnitBox: an advanced object detection network[C], 516-520(2016).
[41] Fang Z C, Chen X R, Chen Y H et al. Towards good practice for CNN-based monocular depth estimation[C], 1080-1089(2020).
[42] Laina I, Rupprecht C, Belagiannis V et al. Deeper depth prediction with fully convolutional residual networks[C], 239-248(2016).
[43] Hao Z X, Li Y, You S D et al. Detail preserving depth estimation from a single image using attention guided networks[C], 304-313(2018).
[44] Fu H, Gong M M, Wang C H et al. Deep ordinal regression network for monocular depth estimation[C], 2002-2011(2018).
[45] Hu J J, Ozay M, Zhang Y et al. Revisiting single image depth estimation: toward higher resolution maps with accurate object boundaries[C], 1043-1051(2019).
[46] Ramamonjisoa M, Lepetit V. SharpNet: fast and accurate recovery of occluding contours in monocular depth estimation[C], 2109-2118(2020).
Get Citation
Copy Citation Text
Jiajun Wang, Yue Liu, Yuhui Wu, Hao Sha, Yongtian Wang. Monocular Depth Estimation Method Based on Plane Coefficient Representation with Adaptive Depth Distribution[J]. Acta Optica Sinica, 2023, 43(14): 1415001
Category: Machine Vision
Received: Jan. 12, 2023
Accepted: Mar. 20, 2023
Published Online: Jul. 13, 2023
The Author Email: Yue Liu (liuyue@bit.edu.cn)