Laser & Optoelectronics Progress, Volume. 57, Issue 15, 153001(2020)

Combination of Fractional Order Differential and Machine Learning Algorithm for Spectral Estimation of Soil Organic Carbon Content

Qidong Zhao1,2、**, Xiangyu Ge1,2, Jianli Ding1,2、*, Jingzhe Wang1,2,3, Zhenhua Zhang1,2, and Meiling Tian1,2
Author Affiliations
  • 1Key Laboratory of Oasis Ecology, Ministry of Education, Xinjiang University, Urumqi, Xinjiang 830046, China
  • 2Key Laboratory of Smart City and Environmental Modelling of Higher Education Institute, College of Resource and Environmental Sciences, Xinjiang University, Urumqi, Xinjiang 830046, China
  • 3Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou, Guangdong 510650, China
  • show less
    References(34)

    [1] Sakschewski B, von Bloh W, Boit A et al. Resilience of Amazon forests emerges from plant trait diversity[J]. Nature Climate Change, 6, 1032-1036(2016).

    [3] Viscarra Rossel R A, Behrens T, Ben-Dor E et al. A global spectral library to characterize the world's soil[J]. Earth-Science Reviews, 155, 198-230(2016).

    [4] Fang X, Guo X L, Zhang C et al. Contributions of climate change to the terrestrial carbon stock of the arid region of China: a multi-dataset analysis[J]. Science of the Total Environment, 668, 631-644(2019).

    [5] O'Rourke S M. Stockmann U, Holden N M, et al. An assessment of model averaging to improve predictive power of portable VIS-NIR and XRF for the determination of agronomic soil properties[J]. Geoderma, 279, 31-44(2016).

    [6] Cambou A, Cardinael R, Kouakoua E et al. Prediction of soil organic carbon stock using visible and near infrared reflectance spectroscopy (VNIRS) in the field[J]. Geoderma, 261, 151-159(2016).

    [7] Ding J L, Yang A X, Wang J Z et al. Machine-learning-based quantitative estimation of soil organic carbon content by VIS/NIR spectroscopy[J]. PeerJ, 6, e5714(2018).

    [8] Dotto A C. Dalmolin R S D, Caten A T, et al. A systematic study on the application of scatter-corrective and spectral-derivative preprocessing for multivariate prediction of soil organic carbon by VIS-NIR spectra[J]. Geoderma, 314, 262-274(2018).

    [9] Liu Y F, Song Y L, Guo L et al. Geostatistical models of soil organic carbon density prediction based on soil hyperspectral reflectance[J]. Transactions of the Chinese Society of Agricultural Engineering, 33, 183-191(2017).

    [10] Filippi P, Cattle S R. Bishop T F A, et al. Combining ancillary soil data with VIS-NIR spectra to improve predictions of organic and inorganic carbon content of soils[J]. MethodsX, 5, 551-560(2018).

    [11] Hong Y S, Chen S C, Liu Y L et al. Combination of fractional order derivative and memory-based learning algorithm to improve the estimation accuracy of soil organic matter by visible and near-infrared spectroscopy[J]. CATENA, 174, 104-116(2019).

    [12] Vašát R, Kodešová R, Klement A et al. Simple but efficient signal pre-processing in soil organic carbon spectroscopic estimation[J]. Geoderma, 298, 46-53(2017).

    [13] Delwiche S R, Reeves J B. A graphical method to evaluate spectral preprocessing in multivariate regression calibrations: example with Savitzky-Golay filters and partial least squares regression[J]. Applied Spectroscopy, 64, 73-82(2010).

    [14] Wang J Z, Ding J L, Abulimiti A et al. Quantitative estimation of soil salinity by means of different modeling methods and visible-near infrared (VIS-NIR) spectroscopy, Ebinur Lake Wetland, Northwest China[J]. PeerJ, 6, e4703(2018).

    [15] Wang X P, Zhang F, Ding J L et al. Estimation of soil salt content (SSC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR), Northwest China, based on a Bootstrap-BP neural network model and optimal spectral indices[J]. Science of the Total Environment, 615, 918-930(2018).

    [16] Hong Y S, Chen Y Y, Yu L et al. Combining fractional order derivative and spectral variable selection for organic matter estimation of homogeneous soil samples by VIS-NIR spectroscopy[J]. Remote Sensing, 10, 479(2018).

    [19] Wang F, Yang S T, Ding J L et al. Environmental sensitive variable optimization and machine learning algorithm using in soil salt prediction at oasis[J]. Transactions of the Chinese Society of Agricultural Engineering, 34, 102-110(2018).

    [20] Nawar S, Mouazen A M. On-line VIS-NIR spectroscopy prediction of soil organic carbon using machine learning[J]. Soil and Tillage Research, 190, 120-127(2019).

    [21] Lu R K[M]. Soil agricultural chemical analysis methods(2000).

    [22] Ge X Y, Wang J Z, Ding J L et al. Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring[J]. PeerJ, 7, e6926(2019).

    [23] Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 70, 489-501(2006).

    [24] Belgiu M, Dragut L. Random forest in remote sensing: a review of applications and future directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24-31(2016).

    [25] Du P J, Samat A, Waske B et al. Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 105, 38-53(2015).

    [26] Rossel R A V, Behrens T. Using data mining to model and interpret soil diffuse reflectance spectra[J]. Geoderma, 158, 46-54(2010).

    [28] Ogutu J O, Schulz-Streeck T, Piepho H P. Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions[J]. BMC Proceedings, 6, s10(2012).

    [29] Liu L F, Ji M, Buchroithner M F. Combining partial least squares and the gradient-boosting method for soil property retrieval using visible near-infrared shortwave infrared spectra[J]. Remote Sensing, 9, 1299(2017).

    [31] Wang J Z, Tiyip T, Ding J L et al. Quantitative estimation of organic matter content in arid soil using VIS-NIR spectroscopy preprocessed by fractional derivative[J]. Journal of Spectroscopy, 2017, 1375158(2017).

    [32] Hong Y S, Liu Y L, Chen Y Y et al. Application of fractional-order derivative in the quantitative estimation of soil organic matter content through visible and near-infrared spectroscopy[J]. Geoderma, 337, 758-769(2019).

    [33] Shi Z, Wang Q L, Peng J et al. Development of a national VNIR soil-spectral library for soil classification and prediction of organic matter concentrations[J]. Scientia Sinica (Terrae), 44, 978-988(2014).

    [34] Shi Z, Ji W J. Viscarra Rossel R A, et al. Prediction of soil organic matter using a spatially constrained local partial least squares regression and the Chinese VIS-NIR spectral library[J]. European Journal of Soil Science, 66, 679-687(2015).

    Tools

    Get Citation

    Copy Citation Text

    Qidong Zhao, Xiangyu Ge, Jianli Ding, Jingzhe Wang, Zhenhua Zhang, Meiling Tian. Combination of Fractional Order Differential and Machine Learning Algorithm for Spectral Estimation of Soil Organic Carbon Content[J]. Laser & Optoelectronics Progress, 2020, 57(15): 153001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Spectroscopy

    Received: Nov. 1, 2019

    Accepted: Nov. 26, 2019

    Published Online: Aug. 4, 2020

    The Author Email: Qidong Zhao (zhaoqidong1994@163.com), Jianli Ding (watarid@xju.edu.cn)

    DOI:10.3788/LOP57.153001

    Topics