Chinese Journal of Lasers, Volume. 48, Issue 15, 1507004(2021)

Multiple-Scale Inpainting Convolutional Neural Network for Retinal OCT Image Segmentation

Kun Yuan and Li Huo*
Author Affiliations
  • Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
  • show less
    References(35)

    [1] Huang D, Swanson E, Lin C et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).

    [2] Weng W, Liang Y J, Kimball E S et al. Decreasing incidence of type 2 diabetes mellitus in the United States, 2007-2012: epidemiologic findings from a large US claims database[J]. Diabetes Research and Clinical Practice, 117, 111-118(2016).

    [3] Ess A, Mueller T, Grabner H et al. Segmentation-based urban traffic scene understanding[C]. //Procedings of the British Machine Vision Conference 2009, September, 2009, London, 84.1-84.11(2009).

    [4] Zhao H S, Qi X J, Shen X Y et al. ICNet for real-time semantic segmentation on high-resolution images[M]. //Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science, 11207, 418-434(2018).

    [5] Xu H Z, Gao Y, Yu F et al. End-to-end learning of driving models from large-scale video datasets[C]. //2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA., 3530-3538(2017).

    [6] Yoon Y, Jeon H G, Yoo D et al. Learning a deep convolutional network for light-field image super-resolution[C]. //2015 IEEE International Conference on Computer Vision Workshop (ICCVW), December 7-13, 2015, Santiago, Chile., 57-65(2015).

    [7] Roy A G, Conjeti S, Karri S P K et al. ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks[J]. Biomedical Optics Express, 8, 3627-3642(2017).

    [8] Shah A, Zhou L X, Abrámoff M D et al. Multiple surface segmentation using convolution neural nets: application to retinal layer segmentation in OCT images[J]. Biomedical Optics Express, 9, 4509-4526(2018).

    [10] Wang P Q, Chen P F, Yuan Y et al. Understanding convolution for semantic segmentation[C]. //2018 IEEE Winter Conference on Applications of Computer Vision (WACV), March 12-15, 2018, Lake Tahoe, NV, USA., 1451-1460(2018).

    [11] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[M]. //Navab N, Hornegger J, Wells W M, et al. Medical image computing and computer-assisted intervention-MICCAI 2015. Lecture notes in computer science, 9351, 234-241(2015).

    [12] Lin G S, Milan A, Shen C H et al. RefineNet: multi-path refinement networks for high-resolution semantic segmentation[C]. //2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI USA, 5168-5177(2017).

    [13] Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 2481-2495(2017).

    [14] Peng C, Zhang X Y, Yu G et al. Large kernel matters: improve semantic segmentation by global convolutional network[C]. //2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, Honolulu, HI, USA, 1743-1751(2017).

    [15] Chen L C, Zhu Y K, Papandreou G et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[M]. //Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science, 11211, 833-851(2018).

    [16] Zhao H S, Shi J P, Qi X J et al. Pyramid scene parsing network[C]. //2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA., 6230-6239(2017).

    [17] Chen L C, Papandreou G, Kokkinos I et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 834-848(2018).

    [20] Chiu S J, Li X T, Nicholas P et al. Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation[J]. Optics Express, 18, 19413-19428(2010).

    [21] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C]. //2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA., 770-778(2016).

    [24] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 60, 84-90(2017).

    [25] He K M, Gkioxari G, Dollár P et al. Mask R-CNN[C]. //2017 IEEE International Conference on Computer Vision (ICCV), October 22-29, 2017, Venice, Italy., 2980-2988(2017).

    [26] Ren S Q, He K M, Girshick R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    [27] Liu W, Anguelov D, Erhan D et al. SSD: single shot multibox detector[M]. //Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science, 9905, 21-37(2016).

    [28] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]. //2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA., 3431-3440(2015).

    [29] Ciresan D, Giusti A, Gambardella L M et al. Deep neural networks segment neuronal membranes in electron microscopy images[J]. In Advances in Neural Information Processing Systems, 2843-2851(2012).

    [30] Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation[C]. //2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile., 1520-1528(2015).

    [34] Yu C Q, Wang J B, Peng C et al. Learning a discriminative feature network for semantic segmentation[C]. //2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA., 1857-1866(2018).

    [35] Li Q L, Li S Y, He Z Y et al. DeepRetina: layer segmentation of retina in OCT images using deep learning[J]. Translational Vision Science & Technology, 9, 61(2020).

    Tools

    Get Citation

    Copy Citation Text

    Kun Yuan, Li Huo. Multiple-Scale Inpainting Convolutional Neural Network for Retinal OCT Image Segmentation[J]. Chinese Journal of Lasers, 2021, 48(15): 1507004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: biomedical photonics and laser medicine

    Received: Apr. 12, 2021

    Accepted: Jul. 13, 2021

    Published Online: Aug. 6, 2021

    The Author Email: Li Huo (lhuo@tsinghua.edu.cn)

    DOI:10.3788/CJL202148.1507004

    Topics