Matter and Radiation at Extremes, Volume. 10, Issue 3, 037201(2025)

3+1 formulation of light modes in nonlinear electrodynamics

Chul Min Kim1,2,3 and Sang Pyo Kim4,5
Author Affiliations
  • 1Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
  • 2Center for Relativistic Laser Science, Institute for Basic Science, Gwangju 61005, South Korea
  • 3Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
  • 4Department of Physics, Kunsan National University, Gunsan 54150, South Korea
  • 5Asia Pacific Center for Theoretical Physics, Pohang 37673, South Korea
  • show less
    References(70)

    [9] W.Dittrich, M.Reuter. Effective Lagrangians in Quantum Electrodynamics, 1-241(1985).

    [10] E. S.Fradkin, D. M.Gitman, S. M.Shvartsman. Quantum Electrodynamics with Unstable Vacuum, 1-250(1991).

    [22] J.Plebański. Lectures on Non-linear Electrodynamics, 1-147(1970).

    [31] J. D.Jackson. Classical Electrodynamics, 555-556(1999).

    [35] L. D.Landau, E. M.Lifshitz, L. P.Pitaevskii. Electrodynamics of Continuous Media, 1-480(1984).

    [36] [36] The probe light’s frequency ω is assumed to be much smaller than the medium’s characteristic frequency. For the QED vacuum, the characteristic frequency is associated with the electron’s rest mass energy m ≃ 0.5 MeV.

    [38] A. B.Bhatia, M.Born, P. C.Clemmow, D.Gabor, E.Wolf et al. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 790-795(1999).

    [39] R. C.McPhedran, D. B.Melrose. Electromagnetic Processes in Dispersive Media, 68-71(1991).

    [40] [40] The cross product of two vectors can be rewritten as a matrix–vector product. For n = (n1, n2, n3), we construct an associated matrix ñ with ñij=−ϵijknk. Then, the following identities hold: n×A=ñ⋅A, (n×A)B=(ñ⋅A)B, and (AB)⋅ñ=−A(ñ⋅B).

    [42] R. A.Horn, C. R.Johnson. Matrix Analysis(2013).

    [45] V. B.Berestetskii, E. M.Lifshitz, L. P.Pitaevskii. Quantum Electrodynamics, 4, 573-585(1982).

    [47] J. W.Gibbs, E. B.Wilson. Vector Analysis: A Text-Book for the Use of Students of Mathematics and Physics, 295-297(1913).

    [48] [48] For a direction vector n̂ and an arbitrary vector A, we use the following notation: An≔A⋅n̂, Ac≔A×n̂, At≔(n̂×A)×n̂, A2 ≔ A · A, and At2≔A2−An2.

    [50] T. W.Baumgarte, S. L.Shapiro. Numerical Relativity: Solving Einstein’s Equations on the Computer, 46-86(2010).

    [54] C.Bambi, K. A.Bronnikov. Regular black holes sourced by nonlinear electrodynamics. Regular Black Holes: Towards a New Paradigm of Gravitational Collapse, 37-67(2023).

    [56] V. F.Weisskopf. Ueber die elektrodynamik des vakuums auf grund des quanten-theorie des elektrons. Dan. Mat. Fys. Medd., 14, 1-39(1936).

    [61] D. B.Melrose. Quantum Plasmadynamics: Magnetized Plasmas, 372-378(2013).

    [67] M. G.Baring, P. L.Gonthier, A. K.Harding, Z.Wadiasingh, G.Younes et al. Magnetars as astrophysical laboratories of extreme quantum electrodynamics: The case for a compton telescope. Bull. Am. Astron. Soc., 51, 292(2019).

    Tools

    Get Citation

    Copy Citation Text

    Chul Min Kim, Sang Pyo Kim. 3+1 formulation of light modes in nonlinear electrodynamics[J]. Matter and Radiation at Extremes, 2025, 10(3): 037201

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Sep. 27, 2024

    Accepted: Mar. 3, 2025

    Published Online: Jul. 16, 2025

    The Author Email:

    DOI:10.1063/5.0240870

    Topics