Optics and Precision Engineering, Volume. 33, Issue 12, 1955(2025)

MDAT:Multi-dimensional aggregation transformer for image super-resolution reconstruction

Qingjiang CHEN and Pengmin CHEN*
Author Affiliations
  • School of Science, Xi'an University of Architecture and Technology, Xi'an710055, China
  • show less
    Figures & Tables(18)
    Network structure of MDAT
    Structure of the spatial transformer module and channel transformer module
    Structure of the spatial-channel interaction module
    Structure of the feature reuse transformer module
    Performance comparison of different algorithms
    Visualization of ×4SR task for different algorithms
    Visualization of ablation study on MSIMM
    Visualization of ablation study on SCIM
    Visualization of ablation study on FRTM
    Visualization of ablation study on core modules
    • Table 1. Quantitative evaluation of ×2 SR task on benchmark datasets

      View table
      View in Article

      Table 1. Quantitative evaluation of ×2 SR task on benchmark datasets

      方法模型复杂度Set5Set14BSD100Urban100Manga109
      Params/MACsPSNR/SSIMPSNR/SSIMPSNR/SSIMPSNR/SSIMPSNR/SSIM
      Bicubic-33.66/0.929 930.24/0.868 829.56/0.843 126.88/0.840 330.80/0.933 9
      SRCNN(2016)8/5336.66/0.954 232.45/0.906 731.36/0.887 929.50/0.894 635.60/0.966 3
      FSRCNN(2016)13/637.00/0.955 832.63/0.908 831.53/0.892 029.88/0.902 036.67/0.971 0
      CARN(2018)1 592/222.837.76/0.959 033.52/0.916 632.09/0.897 831.92/0.925 638.36/0.976 5
      SwinIR-L(2021)910/244.438.14/0.961 133.86/0.920 632.31/0.901 232.76/0.934 039.12/0.978 3
      DAT-L(2023)763/173.038.25/0.961 534.01/0.921 532.35/0.902 132.91/0.934 839.51/0.979 0
      Omni-SR(2023)772/194.538.22/0.961 333.98/0.921 032.36/0.902 033.05/0.936 339.28/0.978 4
      SwinIR-NG(2023)1 181/274.138.17/0.961 233.94/0.920 532.31/0.901 332.78/0.934 039.20/0.978 1
      CRAFT(2024)737/176.638.23/0.961 533.92/0.921 132.33/0.901 632.86/0.934 339.39/0.978 6
      MambaIR-light(2024)1 363/278.938.16/0.961 034.00/0.921 232.34/0.901 732.92/0.935 639.31/0.977 9
      SRConvNet-L(2025)885/16038.14/0.961 033.81/0.919 932.28/0.901 032.59/0.932 139.22/0.977 9
      HiT-SNG(2025)1 013/213.938.21/0.961 234.00/0.921 732.35/0.902 033.01/0.936 039.32/0.978 2
      Ours997/289.438.29/0.961 634.11/0.921 932.39/0.902 433.16/0.936 939.60/0.979 1
    • Table 2. Quantitative evaluation of ×3 SR task on benchmark datasets

      View table
      View in Article

      Table 2. Quantitative evaluation of ×3 SR task on benchmark datasets

      方法模型复杂度Set5Set14BSD100Urban100Manga109
      Params/MACsPSNR/SSIMPSNR/SSIMPSNR/SSIMPSNR/SSIMPSNR/SSIM
      Bicubic-30.39/0.868 227.55/0.774 227.21/0.738 524.46/0.734 926.95/0.855 6
      SRCNN(2016)8/5332.75/0.909 029.30/0.821 528.41/0.786 326.24/0.798 930.48/0.911 7
      FSRCNN(2016)13/533.18/0.914 029.37/0.824 028.53/0.791 026.43/0.808 031.10/0.921 0
      CARN(2018)1 592/119.034.29/0.925 530.29/0.840 729.06/0.803 428.06/0.849 333.50/0.944 0
      SwinIR-L(2021)918/110.834.62/0.928 930.54/0.846 329.20/0.808 228.66/0.862 433.98/0.947 8
      DAT-L(2023)947/96.734.75/0.929 930.63/0.847 529.30/0.810 628.90/0.866 834.55/0.950 2
      Omni-SR(2023)780/88.434.70/0.929 430.57/0.846 929.28/0.809 428.84/0.865 634.22/0.948 7
      SwinIR-NG(2023)1 190/114.134.64/0.929 330.58/0.847 129.24/0.809 028.75/0.863 934.22/0.948 8
      CRAFT(2024)744/78.434.71/0.929 530.61/0.846 929.24/0.809 328.77/0.863 534.29/0.949 1
      MambaIR-light(2024)1 371/124.634.72/0.929 630.63/0.847 529.29/0.809 929.00/0.868 934.39/0.949 0
      SRConvNet-L(2025)906/7434.59/0.928 830.50/0.845 529.22/0.808 128.56/0.860 034.17/0.947 9
      HiT-SNG(2025)1 021/99.534.74/0.929 730.62/0.847 429.26/0.810 028.91/0.867 134.38/0.949 5
      Ours1 007/129.834.76/0.930 030.65/0.847 629.32/0.810 729.00/0.868 334.64/0.950 5
    • Table 3. Quantitative evaluation of ×4 SR task on benchmark datasets

      View table
      View in Article

      Table 3. Quantitative evaluation of ×4 SR task on benchmark datasets

      方法模型复杂度Set5Set14BSD100Urban100Manga109
      Params/MACsPSNR/SSIMPSNR/SSIMPSNR/SSIMPSNR/SSIMPSNR/SSIM
      Bicubic-28.42/0.810 426.00/0.702 725.96/0.667 523.14/0.657 724.89/0.786 6
      SRCNN(2016)8/5330.48/0.862 627.50/0.751 326.90/0.710 124.52/0.722 127.58/0.855 5
      FSRCNN(2016)13/4.630.72/0.866 027.61/0.755 026.98/0.715 024.62/0.728 027.90/0.861 0
      CARN(2018)1 592/91.032.13/0.893 728.60/0.780 627.58/0.734 926.07/0.783 730.47/0.908 4
      SwinIR-L(2021)930/63.632.44/0.897 628.77/0.785 827.69/0.740 626.47/0.798 030.92/0.915 1
      DAT-L(2023)910/78.432.57/0.899 228.87/0.788 027.75/0.743 126.65/0.803 531.37/0.917 9
      Omni-SR(2023)792/50.932.49/0.898 828.78/0.785 927.71/0.741 526.64/0.801 831.02/0.915 1
      SwinIR-NG(2023)1 201/64.432.44/0.898 028.83/0.787 027.73/0.741 826.61/0.801 031.09/0.916 1
      CRAFT(2024)753/46.532.52/0.898 928.85/0.787 227.72/0.741 826.56/0.799 531.18/0.916 8
      MambaIR-light(2024)1 280/42.932.36/0.898 428.53/0.789 527.78/0.744 626.68/0.805 731.17/0.917 6
      SRConvNet-L(2025)902/4532.44/0.897 628.77/0.785 727.69/0.740 226.47/0.797 030.96/0.913 9
      HiT-SNG(2025)1 032/57.732.55/0.899 128.83/0.787 327.74/0.742 626.75/0.805 331.24/0.917 6
      Ours1 023/73.832.60/0.899 728.91/0.788 527.77/0.743 426.77/0.806 331.38/0.917 2
    • Table 4. Per-frame average inference time

      View table
      View in Article

      Table 4. Per-frame average inference time

      放大倍数输出分辨率单帧图像平均推理时间/s
      SwinIR-LMDAT(Ours)
      ×21 280×7201.164 71.190 0
      ×30.510 90.501 8
      ×40.282 30.264 2
    • Table 5. Ablation study of MSIMM

      View table
      View in Article

      Table 5. Ablation study of MSIMM

      实验对象模型复杂度Urban100Manga109
      Params/MACsPSNR/SSIMPSNR/SSIM
      Re-Conv3×3871/197.433.00/0.935 739.50/0.979 0
      Re-3*Conv3×3871/200.432.00/0.935 639.50/0.979 0
      W-MSIMM885/203.533.03/0.935 939.53/0.979 1
    • Table 6. Ablation study of SCIM

      View table
      View in Article

      Table 6. Ablation study of SCIM

      实验对象模型复杂度Urban100Manga109
      Params/MACsPSNR/SSIMPSNR/SSIM
      WO-SCIM885/203.533.03/0.935 939.53/0.979 1
      W-SI891/205.032.95/0.935 339.51/0.979 0
      W-CI912/203.832.91/0.934 839.49/0.979 0
      W-SCIM919/205.333.11/0.936 739.58/0.979 1
    • Table 7. Ablation study of FRTM

      View table
      View in Article

      Table 7. Ablation study of FRTM

      实验对象模型复杂度Urban100Manga109
      Params/MACsPSNR/SSIMPSNR/SSIM
      WO-FRTM919/205.333.11/0.936 739.58/0.979 1
      W-Res919/205.332.94/0.935 039.50/0.979 0
      W-FRTM997/289.433.16/0.936 939.60/0.979 1
    • Table 8. Ablation study of Core Modules

      View table
      View in Article

      Table 8. Ablation study of Core Modules

      MSIMMSCIMFRTM模型复杂度Urban100Manga109
      Params/MACsPSNR/SSIMPSNR/SSIM
      ×××871/197.433.00/0.935 739.50/0.979 0
      ××885/203.533.03/0.935 939.53/0.979 1
      ×919/205.333.11/0.936 739.58/0.979 1
      997/289.433.16/0.936 939.60/0.979 1
    Tools

    Get Citation

    Copy Citation Text

    Qingjiang CHEN, Pengmin CHEN. MDAT:Multi-dimensional aggregation transformer for image super-resolution reconstruction[J]. Optics and Precision Engineering, 2025, 33(12): 1955

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 13, 2025

    Accepted: --

    Published Online: Aug. 15, 2025

    The Author Email:

    DOI:10.37188/OPE.20253312.1955

    Topics