Optics and Precision Engineering, Volume. 32, Issue 22, 3348(2024)

Spatial-spectral reweighted sparse multi-layer nonnegative matrix factorization for hyperspectral image unmixing

Jiming TANG1, Wenxing BAO1、*, Bingbing LEI1、*, Wei FENG2, and Kewen QU1
Author Affiliations
  • 1School of Computer Science and Engineering, North Minzu University, Yinchuan75002, China
  • 2School of Electronic Engineering, Xidian University, Xi'an710071, China
  • show less
    References(40)

    [1] WEI J J, WANG X F. An overview on linear unmixing of hyperspectral data[J]. Mathematical Problems in Engineering, 2020, 3735403(2020).

    [2] KHAN M J, KHAN H S, YOUSAF A et al. Modern trends in hyperspectral image analysis: a review[J]. IEEE Access, 6, 14118-14129(2018).

    [3] PU R L. Mapping tree species using advanced remote sensing technologies: a state-of-the-art review and perspective[J]. Journal of Remote Sensing, 2021, 9812624(2021).

    [4] HUETE A R, MIURA T, GAO X. Land cover conversion and degradation analyses through coupled soil-plant biophysical parameters derived from hyperspectral EO-1 Hyperion[J]. IEEE Transactions on Geoscience and Remote Sensing, 41, 1268-1276(2003).

    [5] GENDRIN C, ROGGO Y, COLLET C. Pharmaceutical applications of vibrational chemical imaging and chemometrics: a review[J]. Journal of Pharmaceutical and Biomedical Analysis, 48, 533-553(2008).

    [6] HE W, ZHANG H Y, ZHANG L P. Sparsity-regularized robust non-negative matrix factorization for hyperspectral unmixing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9, 4267-4279(2016).

    [7] GOETZ A F, VANE G, SOLOMON J E et al. Imaging spectrometry for Earth remote sensing[J]. Science, 228, 1147-1153(1985).

    [8] GHAMISI P, YOKOYA N, LI J et al. Advances in hyperspectral image and signal processing: a comprehensive overview of the state of the art[J]. IEEE Geoscience and Remote Sensing Magazine, 5, 37-78(2017).

    [9] BIOUCAS-DIAS J M, PLAZA A. An overview on hyperspectral unmixing: geometrical, statistical, and sparse regression based approaches[C], 1135-1138(2011).

    [10] BEKIT A, CHANG C I, LAMPE B et al. N-FINDER for finding endmembers in compressively sensed band domain[J]. IEEE Transactions on Geoscience and Remote Sensing, 58, 1087-1101(2020).

    [11] WINTER M E. Comparison of approaches for determining end-members in hyperspectral data[C], 305-313(2000).

    [12] LI J, AGATHOS A, ZAHARIE D et al. Minimum volume simplex analysis: a fast algorithm for linear hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 53, 5067-5082(2015).

    [13] BIOUCAS-DIAS J M. A variable splitting augmented lagrangian approach to linear spectral unmixing[C], 1-4(2009).

    [14] SHI Z W, TANG W, DUREN Z N et al. Subspace matching pursuit for sparse unmixing of hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 52, 3256-3274(2014).

    [15] WANG R, LI H C, PIZURICA A et al. Hyperspectral unmixing using double reweighted sparse regression and total variation[J]. IEEE Geoscience and Remote Sensing Letters, 14, 1146-1150(2017).

    [16] ZHANG S Q, LI J, LI H C et al. Spectral–spatial weighted sparse regression for hyperspectral image unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 56, 3265-3276(2018).

    [17] BHATT J S, JOSHI M V. Deep learning in hyperspectral unmixing: a review[C], 2189-2192(2020).

    [18] JIN Q W, MA Y, FAN F et al. Adversarial autoencoder network for hyperspectral unmixing[J]. IEEE Transactions on Neural Networks and Learning Systems, 34, 4555-4569(2023).

    [19] GAO L R, HAN Z, HONG D F et al. CyCU-net: cycle-consistency unmixing network by learning cascaded autoencoders[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 5503914(2022).

    [20] JIA S, QIAN Y T. Spectral and spatial complexity-based hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 45, 3867-3879(2007).

    [21] WANG W H, QIAN Y T, TANG Y Y. Hypergraph-regularized sparse NMF for hyperspectral unmixing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9, 681-694(2016).

    [22] FENG X R, LI H C, LI J et al. Hyperspectral unmixing using sparsity-constrained deep nonnegative matrix factorization with total variation[J]. IEEE Transactions on Geoscience and Remote Sensing, 56, 6245-6257(2018).

    [23] CHANG C I, DU Q. Estimation of number of spectrally distinct signal sources in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 42, 608-619(2004).

    [24] LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 401, 788-791(1999).

    [25] QIAN Y T, JIA S, ZHOU J et al. Hyperspectral unmixing via $L1/2$ sparsity-constrained nonnegative matrix factorization[J]. IEEE Transactions on Geoscience and Remote Sensing, 49, 4282-4297(2011).

    [26] RAJABI R, GHASSEMIAN H. Spectral unmixing of hyperspectral imagery using multilayer NMF[J]. IEEE Geoscience and Remote Sensing Letters, 12, 38-42(2015).

    [27] RAJABI R, GHASSEMIAN H. Multilayer structured nmf for spectral unmixing of hyperspectral images[C], 1-4(2014).

    [28] DONG L, YUAN Y, LUXS X. Spectral-spatial joint sparse NMF for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 59, 2391-2402(2021).

    [29] WANG R, LI H C, LIAO W Z et al. Double Reweighted Sparse Regression for Hyperspectral Unmixing[C], 6986-6989(2016).

    [30] YANG L S, PENG J H, SU H W et al. Combined nonlocal spatial information and spatial group sparsity in NMF for hyperspectral unmixing[J]. IEEE Geoscience and Remote Sensing Letters, 17, 1767-1771(2020).

    [31] LV X C, WANG W H, LIU H F. Cluster-wise weighted NMF for hyperspectral images unmixing with imbalanced data[J]. Remote Sensing, 13, 268(2021).

    [32] DENG C Z, CHEN Y G, ZHANG S Q et al. Robust dual spatial weighted sparse unmixing for remotely sensed hyperspectral imagery[J]. Remote Sensing, 15, 4056(2023).

    [33] IORDACHE M D, BIOUCAS-DIAS J M, PLAZA A. Sparse unmixing of hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 49, 2014-2039(2011).

    [34] PENG J T, SUN W W, LI H C et al. Low-Rank and Sparse Representation for Hyperspectral Image Processing: a review[J]. IEEE Geoscience and Remote Sensing Magazine, 10, 10-43(2022).

    [35] HEINZ D C. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 39, 529-545(2001).

    [36] NASCIMENTO J M P, DIAS J M B. Vertex component analysis: a fast algorithm to unmix hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 43, 898-910(2005).

    [37] ZHU F. Spectral unmixing datasets with ground truths[webpage](2017).

    [38] GUO Z H, WITTMAN T, OSHER S. L1 unmixing and its application to hyperspectral image enhancement[C]. Hyperspectral(2009).

    [40] WANG X H, ZHAO M, CHEN J. Hyperspectral unmixing via plug-and-play priors[C], 1063-1067(2020).

    Tools

    Get Citation

    Copy Citation Text

    Jiming TANG, Wenxing BAO, Bingbing LEI, Wei FENG, Kewen QU. Spatial-spectral reweighted sparse multi-layer nonnegative matrix factorization for hyperspectral image unmixing[J]. Optics and Precision Engineering, 2024, 32(22): 3348

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 11, 2024

    Accepted: --

    Published Online: Mar. 10, 2025

    The Author Email: Wenxing BAO (bwx71@163. com), Bingbing LEI (x_generation@126.com)

    DOI:10.37188/OPE.20243222.3348

    Topics